Меню

2so2 o2 2so3 смещение равновесия при повышении давления

Пример 5. Равновесие системы 2SO2 + O2 D 2SO3 установилось, когда концентрации компонентов (моль/л) были: [SO2]равн

Пример 4.

Равновесие системы 2SO2 + O2 D 2SO3 установилось, когда концентрации компонентов (моль/л) были: [SO2]равн. = 0,6; [O2]равн. = 0,24; [SO3]равн. = 0,21.

Вычислите константу равновесия этой реакции и исходные концентрации кислорода и диоксида серы.

Химическим равновесием называется такое состояние, когда скорости прямой и обратной реакций равны. Характеризуется химическое равновесие константой К, она имеет вид

K= ([C] c ´ [D] d ) / ([A] a ´ [B] b ).

В условии задачи даны равновесные концентрации. Поэтому сразу можно рассчитать константу химического равновесия для реакции:

K = [SO3] 2 / [SO2] 2 ´ [O2] = 0,21 2 / 0,6 2 ´ 0,24 = 0,51.

Чтобы рассчитать исходные концентрации кислорода и диоксида серы, необходимо найти, сколько этих компонентов было израсходовано на получение 0,21 моля триоксида серы и сложить с равновесными концентрациями. Согласно уравнению реакции для получения 2 молей триоксида серы требуется 2 моля диоксида серы, а для получения 0,21 моля триоксида серы — Х молей диоксида серы. Отсюда

X = 0,21 ´ 2 / 2 = 0,21 моля.

На получение SO3 было израсходовано 0,21 моля SO2, тогда

Для получения 2 молей SO3 требуется 1 моль O2.

Для получения 0,21 моля SO3 — X молей O2.

X = (0,21 ´ 1) / 2 = 0,105 молей.

В каком направлении сместится равновесие в реакциях:

при повышении температуры, понижении давления и увеличении концентрации водорода?

Химическое равновесие в системе устанавливается при постоянстве внешних параметров (Р, С, Т и др. ) Если эти параметры меняются, то система выходит из состояния равновесия и начинает преобладать прямая или обратная реакции. Влияние различных факторов на смещение равновесия отражено в принципе Ле-Шателье: «Если на систему, находящуюся в равновесии, оказать какое-либо воздействие, то равновесие сместится в таком направлении, что оказанное воздействие уменьшится». Используем этот принцип для решения задачи.

При повышении температуры равновесие смещается в сторону эндотермической реакции, т. е. реакции, идущей с поглощением тепла. Первая и третья реакции — экзотермические (DH 0 0 > 0) — в сторону прямой реакции.

При понижении давления равновесие смещается в сторону возрастания числа молей газов, то есть в сторону большего давления. В первой и третьей реакциях в левой и правой частях уравнения одинаковое число молей газов (2-2 и 1-1 соответственно). Поэтому изменение давления не вызовет смещения равновесия в системе. Во второй реакции в левой части 4 моля газов, в правой — 2 моля, поэтому при понижении давления равновесие сместится в сторону обратной реакции.

При увеличении концентрации компонентов реакции равновесие смещается в сторону их расхода. В первой реакции водород находится в продуктах и увеличение его концентрации усилит обратную реакцию, в ходе которой он расходуется. Во второй и третьей реакциях водород входит в число исходных веществ, поэтому увеличение его концентрации смещает равновесие в сторону прямой реакции, идущей с расходом водорода.

121. Окисление серы и ее диоксида протекает по уравнениям:

Как изменятся скорости этих реакций, если объемы каждой из систем уменьшить в четыре раза?

122. Напишите выражение для константы равновесия гомогенной системы N2 + 3H2 D 2NH3. Как изменится скорость прямой реакции образования аммиака, если увеличить концентрацию водорода в три раза?

123. Реакция идет по уравнению N2 + O2 = 2NO. Концентрации исходных веществ до начала реакция были: [N2] = 0,049 моль/л; [О2] = 0,01 моль/л. Вычислите концентрацию этих веществ в момент, когда [NO]=0,005 моль/л. Ответ: [N2] = 0465 моль/л; [О2] = 0,0075 моль/л.

124. Реакция идет по уравнению N2 + 3H2 = 2NH3. Концентрации участвующих в ней веществ были: [N2] = 0,80 моль/л, [Н2] = 1,5 моль/л; [NH3] = 0,10 моль/л. Вычислите концентрацию водорода и аммиака, когда [N2] = 0,5 моль/л. Ответ: [NH3] = 0,7 моль/л; [H2 ] = 0,60 моль/л.

125. Реакция идет по уравнений H2 + J2 = 2НJ. Константа скорости этой реакции при 508 0 С равна 0,16. Исходные концентрации реагирующих веществ: [H2] = 0,04 моль/л;[J2] = 0,05 моль/л. Вычислите начальную скорость реакции и скорость ее, когда [H2] = 0,03 моль/л. Ответ: 3,2×10 –4 ; 1,92×10 –4 .

126. Вычислите, во сколько раз уменьшится скорость реакции, протекающей в газовой фазе, если понизить температуру от 120 до 80°С. Температурный коэффициент скорости реакции 3.

127. Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 60°, если температурный коэффициент скорости данной реакции 2?

128. Как изменится скорость реакции, протекающей в газовой фазе, при понижении температуры на 30°, если температурный коэффициент скорости данной реакции 3?

129. Напишите выражение для константы равновесия гомогенной системы 2SO2 + O2 D 2SO3. Как изменится скорость прямой реакции – образования SO3, если увеличить концентрацию SO2 в три раза?

130. Напишите выражения для константы равновесия гомогенной системы CH4 + CO2 D 2CO + 2H2. Как следует изменить температуру и давление, чтобы повысить выход водорода? Реакция образования водорода эндотермическая.

131. Реакция идет по уравнению 2NО + О2 = 2NО2. Концентрации исходных веществ: [NO] = 0,03 моль/л; [О2] = 0,05 моль/л. Как изменится скорость реакции, если увеличить концентрацию кислорода до 0,10 моль/л и концентрацию NO до 0,06 моль/л?

132. Напишите выражение для константы равновесия гетерогенной системы CО2 + С D 2CO. Как изменится скорость прямой реакции – образования СО, если концентрацию СО2 уменьшить в четыре раза? Как следует изменить давление, чтобы повысить выход СО?

133. Напишите выражение для константы равновесия гетерогенной системы C + H2O (г) D СО + Н2. Как следует изменить концентрацию и давление, чтобы сместить равновесие в сторону обратной реакции – образования водных паров?

134. Равновесие гомогенной системы

установилось при следующих концентрациях реагирующих веществ: [Н2О] = 0,14 моль/л; [Сl2] = 0,14 моль/л; [НС1] = 0,20 моль/л; [O2] = 0,32 моль/л. Вычислите исходные концентрации хлороводорода и кислорода

135. Вычислите константу равновесия для гомогенной системы

если равновесные концентрации реагирующих веществ: [СО]= 0,004 моль/л; [H2O] = 0,064 моль/л; [СО2] = 0,016 моль/л; [H2]-=0,016 моль/л. Ответ: К=1.

136. Константа равновесия гомогенной системы

при некоторой температуре равна 1. Вычислите равновесные концентрации всех реагирующих веществ, если исходные концентрации: [CO] = 0,10 моль/л; [H2O] = 0,40 моль/л.

Читайте также:  Почему после микроинсульта низкое давление

137. Константа равновесия гомогенной системы N2 + 3H2 D 2NH3 при температуре 400 0 С равна 0,1. Равновесные концентрации водорода и аммиака соответственно равны 0,2 и 0,08 моль/л. Вычислите равновесную и исходную концентрацию азота. Ответ: 8 моль/л; 8,04 моль/л.

138. При некоторой температуре равновесие гомогенной системы 2NO+O2 D 2N2 установилось при следующих концентрациях реагирующих веществ: [NO] = 0,2 моль/л; [О2] = 0,1 моль/л; [NO2] = 0,1 моль/л. Вычислите константу равновесия и исходную концентрацию NO и О2.

Ответ: К = 2,5; [NO] = 0,3 моль/л; [О2] = 0,15 моль/л.

139. Почему при изменении давления смещается равновесие системы

N2 + 3H2 D 2NH3 и не смещается равновесие системы N2 + O2 D 2NO? Напишите выражения для констант равновесия каждой из данных систем.

140. Исходные концентрации NO и Cl2 в гомогенной системе 2NО + Cl2 D 2NOCl составляют соответственно 0,5 и 0,2 моль/л. Вычислите константу равновесия, если, к моменту наступления равновесия прореагировало 20% NО. Ответ: 0,416.

Способы выражения концентрации растворов

Дата добавления: 2014-10-31 ; Просмотров: 3781 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Смещение химического равновесия. Принцип Ле Шателье

Как уже отмечалось ранее, химическое равновесие всегда отвечает определенным условиям. При изменении внешних параметров (температуры, концентрации, в некоторых случаях – давления) равновесие может нарушиться. Это объясняется тем, что изменение условий неодинаково влияет на скорости прямой и обратной реакций. Через некоторое время эти скорости вновь сравниваются (за счет изменения равновесных концентраций) и наступает состояние равновесия, отвечающее новым условиям. Изменение равновесных концентраций реагирующих веществ, вызванное изменением какого-либо параметра системы, называется смещением, или сдвигом, химического равновесия.

В 1884 г. Ле Шателье сформулировал принцип, который помогает качественно предсказать смещение химического равновесия при изменении одного из параметров:

Если на систему, находящуюся в состоянии химического равновесия, оказано внешнее воздействие, то равновесие сместится в направлении той реакции, которая ослабляет это воздействие.

Влияние изменения концентрации.

Введение в равновесную систему дополнительных количеств любого из реагирующих веществ ускоряет ту реакцию, в которой оно расходуется.

Например, в реакции:

повышение концентраций NO или O2 смещает равновесие вправо, повышение концентрации NO2 – влево. Равновесие смещается вправо также при уменьшении концентрации NO2, а при уменьшении концентрации NO или O2 – влево.

Влияние температуры.

Повышение температуры смещает равновесие в сторону эндотермической реакции.

Таким образом, для того, чтобы судить о влиянии температуры на химическое равновесие, необходимо знать тепловой эффект (изменение энтальпии) реакции.

CO(газ) + H2O(пар) ⇄ CO2(газ) + H2(газ); = -43,0 кДж

характеризуется отрицательным значением стандартной энтальпии, следовательно, прямая реакция является экзотермической, обратная – эндотермической. Таким образом, при увеличении температуры равновесие сместится в сторону эндотермической, т.е., обратной реакции, а уменьшение температуры сместит равновесие в сторону экзотермической (прямой) реакции.

Влияние давления.

Изменение давления оказывает существенное влияние только на реакции, протекающие в газовой фазе.

При увеличении давления равновесие смещается в сторону образования меньшего числа моль (молекул) газа.

Действительно, уменьшение общего числа молекул в газовой смеси влечет за собой уменьшение давления в системе, что в свою очередь, ослабляет внешнее воздействие.

Так, уравнение обратимого процесса:

показывает, что из четырех молекул в левой части (одной молекулы азота и трех молекул водорода) образуются две молекулы аммиака. Таким образом, повышение давления смещает равновесие вправо, а понижение давления – влево.

В тех случаях, когда в результате реакции число молекул остается постоянным, равновесие при изменении давления не смещается.

К таким реакциям относятся, например:

Эталоны решения задач

1. Рассчитать константу химического равновесия Kc для реакции:

по известным данным:

NO2 SO2 NO SO3
, кДж/моль –300 –370

Оценить возможность самопроизвольного протекания реакции в прямом направлении и значение константы равновесия.

Рассчитаем стандартную энергию Гиббса реакции по первому следствию из закона Гесса:

= 3 + NO — NO2SO2 = -32 кДж.

> 1, т. е. при данной температуре равновесие данной реакции сильно смещено в сторону образования продуктов реакции.

2. Для равновесной реакции:

имеются следующие данные:

= -92,4 кДж, = -0,1978 кДж/К.

а) температуру, при которой система находится в равновесии (Kc = 1);

б) значение константы равновесия при 298 К.

2) Указать направление смещения равновесия при повышении (понижении) температуры.

При Кс = 1 стандартная энергия Гиббса равна нулю. Тогда из соотношения:

Для данной реакции зависимость энергии Гиббса от температуры выглядит следующим образом:

При стандартной температуре (298 К):

Значение Кс при данной температуре найдем из соотношения:

Проведенный расчет показывает, что:

Это означает, что при понижении температуры равновесие смещается в прямом направлении.

Аналогичный вывод можно сделать и исходя из принципа Ле Шателье. Действительно реакция образования аммиака – экзотермическая (

3. Для реакции CO2(газ) + H2(газ) ⇄ CO(газ) + H2O(пар) константа равновесия равна 1. Исходные концентрации веществ составили: С(СO2) = 0,2 моль/л; С(H2) = 0,8 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие.

Обозначим концентрации С(СО2) и С(Н2), вступивших в реакцию, через «х», т. е.

Из уравнения реакции видно, что:

Выражение для константы равновесия имеет вид:

x 2 = 0,16 — 0,2x — 0,8x + x 2

Равновесные концентрации всех веществ равны:

[СO2] = 0,2 — 0,16 = 0,04 моль/л;

[H2] = 0,8 — 0,16 = 0,64 моль/л;

4. Реакция образования йодистого водорода протекает по уравнению:

Исходные концентрации веществ составили: С(H2) = 0,02 моль/л; С(I2) = 0,04 моль/л. Известно, что в реакцию вступило 50% Н2.

1) Вычислить константу химического равновесия.

2) В каком направлении сместится равновесие, если:

а) увеличить концентрацию I2?

б) уменьшить концентрацию HI?

в) увеличить давление?

Исходя из уравнения реакции, определяем концентрации веществ, прореагировавших между собой:

Находим равновесные концентрации:

[HI] = 2×c(H2)прореаг. = 0,02 моль/л (по уравнению реакции);

Подставляем равновесные концентрации в выражение константы равновесия:

Читайте также:  Как влияет атмосферное давление на ловлю карпа

Увеличение концентрации I2 и уменьшение концентрации HI приведет к сдвигу равновесия в сторону прямой реакции. Увеличение давления не вызовет сдвига равновесия.

5. При определенных условиях в системе установилось равновесие:

Равновесные концентрации веществ составили: [NO] = 4 моль/л; [O2] = 6 моль/л; [NO2] = 10 моль/л. Найти исходные концентрации NО и О2.

Исходные концентрации равны сумме равновесных концентраций и концентраций вступивших в реакции веществ. Последние можно определить из стехиометрических соотношений:

С(O2)прореаг. = = 5 моль/л.

Вопросы для самоконтроля

1. Какие реакции называют обратимыми? Какие необратимыми? Приведите примеры.

2. Что называется химическим равновесием? Сформулируйте термодинамическое и кинетическое определение состояния химического равновесия.

3. Прекращаются ли реакции после наступления равновесия?

4. Как формулируется закон действующих масс для обратимой реакции?

5. Концентрации каких фаз входят в выражение закона действующих масс для обратимой реакции?

6. Что такое константа равновесия?

7. От каких факторов зависит и от каких не зависит константа равновесия?

8. Может ли К быть равной нулю?

9. Какова взаимосвязь между Kc и Kp?

10. Сформулируйте принцип Ле Шателье. Какие факторы влияют на химическое равновесие?

11. Сформулируйте частные принципы смещения равновесия при изменении температуры, концентрации, давления.

12. Смещает ли равновесие в системе введение в нее катализатора?

Варианты задачи для самостоятельного решения

Вариант №1

1. Реакция взаимодействия азота с водородом обратима: N2 + 3H2 ⇄ 2NH3. В состоянии равновесия концентрации участвующих в реакции веществ составляют: С(N2) = 0,8 моль/л; С(H2) = 4,8 моль/л; С(NH3) = 0,6 моль/л. Вычислить исходные концентрации азота и водорода.

2. Константа равновесия для реакции: CH4 + Cl2 ⇄ CH3Cl + HCl при 80 0 С равна 1. Исходные концентрации взятых веществ составляли: С(CH4) = 2 моль/л; С(Cl2) = 6 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие.

Вариант №2

1. Реакция протекает по уравнению: H2 + Cl2 ⇄ 2HCl. Рассчитать константу химического равновесия, если в реакцию вступило 30% С12. Начальные концентрации веществ равны: С(H2) = 3 моль/л; С(Cl2) = 6 моль/л.

2. При состоянии химического равновесия в системе: 2CO + O2 ⇄ 2CO2 концентрации веществ равны: С(CO) = 5 моль/л; С(O2) = 3 моль/л; С(CO2) = 8 моль/л. Найти исходные концентрации СО и О2.

Вариант №3

1. Равновесие реакции: C2H2 + 2H2 ⇄ C2H6 установилось при следующих концентрациях газов: С(C2H2) = 2 моль/л; С(H2) = 1 моль/л; С(C2H6) = 3 моль/л. Рассчитать константу равновесия этой системы и исходные концентрации ацетилена и водорода.

2. Реакция описывается уравнением: A + B ⇄ C + D. Начальные концентрации веществ равны: С(A) = 0,4 моль/л; С(B) = 0,6 моль/л. Константа химического равновесия равна 1. Рассчитать равновесные концентрации всех четырех веществ.

Вариант №4

1. При состоянии химического равновесия в системе: N2 + 3H2 ⇄ 2NH3 концентрации веществ составляют: С(N2) = 2 моль/л; С(H2) = 4 моль/л; С(NH3) = 9 моль/л. Найти исходные концентрации азота и водорода.

2. Константа химического равновесия для реакции: СO2 + H2 ⇄ CO + H2O(пар) при определенной температуре равна 1. Исходные концентрации составляли: С(СO2) = 4 моль/л; С(H2) = 9 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие.

Вариант №5

1. При состоянии химического равновесия в системе: Cl2 + 2NO ⇄ 2NOCl концентрации участвующих в реакции веществ составляют: С(Cl2) = 2 моль/л; С(NO) = 6 моль/л; С(NOCl) = 9 моль/л. Рассчитать исходные концентрации веществ С12 и NO.

2. При взаимодействии азота и водорода установилось равновесие: N2 + 3H2 ⇄ 2NH3. Исходные концентрации азота и водорода равны: С(N2) = 2 моль/л; С(H2) = 1 моль/л. Равновесная концентрация азота С(N2) = 1,8 моль/л. Найти равновесные концентрации водорода и аммиака.

Вариант №6

1. Реакция протекает по уравнению: H2 + I2 ⇄ 2HI. В равновесной смеси при температуре 400 0 С: С(H2) = 0,5 моль/л; С(I2) = 0,2 моль/л; С(HI) = 0,4 моль/л. Вычислить константу равновесия реакции при указанной температуре и исходные концентрации Н2 и I2.

2. Константа равновесия реакции:

при температуре 12 0 С равна 1. Определить равновесные концентрации всех четырех веществ, если исходные концентрации веществ равны: С(CH3COOH) = 1 моль/л; С(C2H5OH) = 0,2 моль/л.

Вариант №7

1. Равновесие реакции: 2Cl2 + O2 ⇄ 2Cl2O установилось при следующих концентрациях газов: С(Cl2) = 5 моль/л; С(O2) = 7 моль/л; С(Cl2O) = 3 моль/л. Рассчитать константу равновесия системы и исходные концентрации С12 и О2.

2. Реакция выражается уравнением: A + B ⇄ C + D. Начальные концентрации веществ: С(A) = 1 моль/л; С(B) = 3 моль/л. Константа химического равновесия равна 1. Рассчитать, сколько моль С и D образовалось.

Вариант №8

1. В системе C2H6 + H2 ⇄ 2CH4 химическое равновесие установилось к моменту, когда 20% Н2 вступило в реакцию. Рассчитать константу химического равновесия, зная, что исходные концентрации были равны: С(H2) = 8 моль/л; С(C2H6) = 3 моль/л.

2. При определенных условиях в системе: 2SO2 + O2 ⇄ 2SO3 установилось химическое равновесие. При этом концентрации всех веществ были следующими: С(SO2) = 5 моль/л; С(O2) = 6 моль/л; С(SO3) = 10 моль/л. Вычислить исходные концентрации SO2 и О2.

Вариант №9

1. При состоянии химического равновесия в системе: N2 + 3H2 ⇄ 2NH3 концентрации участвующих в реакции веществ составили: С(N2) = 3 моль/л; С(H2) = 6 моль/л; С(NH3) = 9 моль/л. Вычислить исходные концентрации Н2 и N2. В каком направлении сместится равновесие, если в системе:

а) увеличить давление;

б) уменьшить концентрацию водорода.

2. Вычислить константу химического равновесия для реакции: H2 + Cl2 ⇄ 2HCl, если известно, что равновесие наступит тогда, когда прореагирует 50% Н2. Исходные концентрации: С(H2) = 6 моль/л; С(Cl2) = 8 моль/л.

Вариант №10

1. В системе установилось равновесие: H2 + Cl2 ⇄ 2HCl. Исходные концентрации С(H2) = 2 моль/л; С(Cl2) = 3 моль/л. Константа равновесия равна 4. Рассчитать равновесные концентрации всех веществ в системе.

2. При нагревании диоксида азота в закрытом сосуде до некоторой температуры равновесие реакции: 2NO2 ⇄ 2NO + O2 установилось при следующих концентрациях: С(NO2) = 0,5 моль/л; С(NO) = 1,2 моль/л; С(O2) = 0,6 моль/л. Вычислить константу равновесия реакции для этой температуры и найти исходную концентрацию NO2.

Вариант №11

1. При взаимодействии азота и водорода установилось равновесие: N2 + 3H2 ⇄ 2NH3. Исходные концентрации азота и водорода составляли: С(N2) = 2 моль/л; С(H2) = 6 моль/л. Равновесная концентрация азота равна: С(N2) = 1,5 моль/л. Рассчитать равновесные концентрации водорода и аммиака.

2. Равновесие реакции: C2H4 + H2 ⇄ C2H6 установилось при следующих концентрациях газов: С(C2H4) = 0,6 моль/л; С(H2) = 0,4 моль/л; С(C2H6) = 1,2 моль/л. Рассчитать константу равновесия этой системы, а также исходные концентрации С2Н4 и Н2.

Читайте также:  Таблица температуры кипения воды под давлением

Вариант №12

1. Вычислить константу химического равновесия для реакции: N2 + 3H2 ⇄ 2NH3, если известно, что равновесие наступит тогда, когда прореагирует 50% Н2. Исходные концентрации: С(N2) = 0,8 моль/л; С(H2) = 2,4 моль/л.

2. При нагревании оксида серы (VI) в закрытом сосуде до некоторой температуры равновесие реакции: 2SO3 ⇄ 2SO2 + O2 установилось при следующих концентрациях: С(SO3) = 0,8 моль/л; С(SO2) = 3,2 моль/л; С(O2) = 1,6 моль/л. Вычислить исходную концентрацию SO3.

Вариант №13

1. Реакция взаимодействия азота и водорода обратима: N2 + 3H2 ⇄ 2NH3. В состоянии равновесия концентрации участвующих в реакции веществ равны: С(N2) = 0,3 моль/л; С(H2) = 0,2 моль/л; С(NH3) = 0,2 моль/л. Вычислить исходные концентрации азота и водорода.

2. Константа химического равновесия для реакции:

при 300К равна 1. Исходные концентрации взятых веществ: С(CH4) = 5 моль/л; С(Cl2) = 4 моль/л. Рассчитать, при каких концентрациях всех четырех веществ установилось равновесие.

Вариант №14

1. При нагревании СОС12 в закрытом сосуде до некоторой температуры равновесие реакции: COCl2 ⇄ CO + Cl2 установилось при следующих концентрациях: С(COCl2) = 3 моль/л; С(CO) = 6 моль/л. Вычислить константу химического равновесия для данной реакции и исходную концентрацию СОСl2.

2. В системе H2 (газ) + I2 (газ) ⇄ 2HI (газ) установилось равновесие. Исходные концентрации веществ равны: С(H2) = 0,2 моль/л; С(I2) = 0,4 моль/л. Константа равновесия равна 4. Рассчитать равновесные концентрации всех веществ в системе.

Вариант №15

1. При определенных условиях в системе установилось равновесие: Cl2 + 2O2 ⇄ 2ClO2. При этом равновесные концентрации веществ равны: С(Cl2) = 4 моль/л; С(O2) = 8 моль/л; С(ClO2) = 10 моль/л. Вычислить исходные концентрации хлора и кислорода.

2. Реакция протекает по уравнению: 2CO + O2 ⇄ 2CO2. Рассчитать константу химического равновесия, если в реакцию вступило 50% О2. Начальные концентрации веществ равны: С(CO) = 5 моль/л; С(O2) = 2 моль/л.

Вариант №16

1. При взаимодействии хлора и оксида азота (II) установилось равновесие: 2NO + Cl2 ⇄ 2NOCl. Исходные концентрации хлора и оксида азота (II) равны: С(NO) = 6 моль/л; С(Cl2) = 3 моль/л. Равновесная концентрация хлора: С(Cl2) = 1,5 моль/л. Найти равновесные концентрации NO и NOC1.

2. Равновесие реакции С2H2 + 2H2 ⇄ C2H6 установилось при следующих концентрациях газов: С(С2H2) = 2 моль/л; С(H2) = 4 моль/л; С(С2H6) = 3 моль/л. Рассчитать константу химического равновесия этой системы и исходные концентрации С2Н2 и Н2.

Вариант №17

1. Реакция протекает по уравнению: H2 + Br2 ⇄ 2HBr. Равновесная смесь при температуре 200 0 С содержит С(H2) = 4 моль/л; С(Br2) = 0,2 моль/л; С(HBr) = 0,8 моль/л. Вычислить константу химического равновесия реакции при указанной температуре и исходные концентрации Н2 и Вr2.

2. Константа равновесия реакции: CO2 + H2 ⇄ CO + H2O (пар) при некоторой температуре равна 1. Определить равновесные концентрации всех четырех веществ, если исходные концентрации веществ равны: С(CO2) = 2 моль/л; С(H2) = 3 моль/л.

Вариант №18

1. В системе 2SO2 + O2 ⇄ 2SO3 установилось химическое равновесие к моменту, когда прореагировало 60% О2. Рассчитать константу химического равновесия, зная, что исходные концентрации составляли: С(SO2) = 6 моль/л; С(O2) = 4 моль/л.

2. При определенных условиях в системе CO2 + H2 ⇄ CH3OH установилось химическое равновесие. При этом концентрации всех веществ составили: С(CO) = 0,8 моль/л; С(H2) = 1 моль/л; С(CH3OH) = 6 моль/л. Вычислить исходные концентрации СО и Н2.

РАСТВОРЫ

Общие сведения

Растворы — это гомогенные системы переменного состава, состоящие из двух и более веществ, называемых компонентами. По агрегатному состоянию растворы могут быть газообразными (воздух), жидкими (кровь, лимфа) и твердыми (сплавы). В медицине наибольшее значение имеют жидкие растворы, которые играют исключительную роль в жизнедеятельности живых организмов. С образованием растворов связаны процессы усвоения пищи и выведения из организма продуктов жизнедеятельности. В форме растворов вводится большое количество лекарственных препаратов.

Для качественного и количественного описания жидких растворов используются термины «растворитель» и «растворенное вещество», хотя в некоторых случаях такое разделение является достаточно условным. Так, медицинский спирт (96% раствор этанола в воде) скорее следует рассматривать как раствор воды в спирте. Все растворители делятся на неорганические и органические. Важнейшим неорганическим растворителем (а в случае биологических систем – единственным) является вода. Это обусловлено такими свойствами воды, как полярность, низкая вязкость, склонность молекул к ассоциации, относительно высокие температуры кипения и плавления. Растворители органической природы разделяют на полярные (спирты, альдегиды, кетоны, кислоты) и неполярные (гексан, бензол, четыреххлористый углерод).

Процесс растворения в равной степени зависит как от природы растворителя, так и от свойств растворенного вещества. Очевидно, что способность образовывать растворы выражена у разных веществ по-разному. Одни вещества могут смешиваться друг с другом в любых количествах (вода и этанол), другие – в ограниченных (вода и фенол). Однако, следует помнить: абсолютно нерастворимых веществ не существует!

Склонность вещества растворяться в том или ином растворителе можно определить, используя простое эмпирическое правило: подобное растворяется в подобном. Действительно, вещества с ионным (соли, щелочи) или полярным (спирты, альдегиды) типом связи хорошо растворимы в полярных растворителях, например, в воде. И наоборот, растворимость кислорода в бензоле на порядок выше чем в воде, так как молекулы O2 и C6H6 неполярны.

Степень сродства соединения к определенному типу растворителя можно оценить, анализируя природу и количественное соотношение входящих в его состав функциональных групп, среди которых выделяют гидрофильные (притягивающие воду) и гидрофобные (отталкивающие воду). К гидрофильным относят полярные группы, такие как гидроксильная (-OH), карбоксильная (-COOH), тиольная (-SH), амино (-NH2). Гидрофобными считают неполярные группы: углеводородные радикалы алифатического (-CH3, -C2H5) и ароматического (-C6H5) рядов. Соединения, имеющие в своем составе как гидрофильные, так и гидрофобные группы, называют дифильными. К таким соединениям относят аминокислоты, белки, нуклеиновые кислоты.

Теории растворов

В настоящее время известны две основные теории растворов: физическая и химическая.

Последнее изменение этой страницы: 2016-08-15; Нарушение авторского права страницы

Источник

Adblock
detector