Меню

Абсолютное давление измерение атмосферного давления

Измерение атмосферного давления

Давление воздуха изменяется в широких пределах. Если оно больше 760 миллиметров ртутрного столба, то считается повышенным, если меньше – то пониженным.

Наблюдения за изменением атмосферного давления позволяют предсказывать погоду. Например, при повышении давления в зимний период погода становится морозней, а летом – жаркой. Пониженное атмосферное давление способствует появлению облачности, выпадению осадков. Поэтому постоянно знать величину атмосферного давления и контролировать его изменения необходимо не только ученым, медикам, но и всем нам.

Атмосферное давление

Атмосферное давление измеряется в миллиметрах ртутного столба, а также в Паскалях и гектоПаскалях. Принято считать нормальным давление, которое равно 760 мм рт. ст. (1013,25 гПа) .

Атмосферное давление, как правило, изменяется в зависимости от изменений погодных условий. Зачастую давление падает перед ненастной погодой, повышается – перед хорошей. Ведение учета изменения давления позволяет определить перемещение циклонов и направление ветров.

На самочувствие человека, проживающего долгое время в определенной местности, изменение характерного давления зачастую не влияет. В случаях, когда происходят непериодические колебания атмосферного давления, даже у здоровых людей появляется головная боль, падает работоспособность и ощущается тяжесть тела.

Изменение атмосферного давления также влияет на многие технологические процессы. Например, при переработке нефтепродуктов, где давление является одним из основных контролируемых технических параметров; хлебо-булочное производство, где показания давления сильно влияют на влажность полуфабрикатов из теста; в авиационной промышленности это очень важный параметр, оказывающий влияние на сроки и условия эксплуатации.

Приборы для измерения атмосферного давления

На сегодняшний день существует несколько видов барометров, с помощью которых осуществляют измерение давления воздуха:

  • Ртутный сифонный барометр – представляет У-образную, наполненную ртутью трубку с открытым и запаянным концом.
  • Ртутный чашечный барометр – состоит из вертикальной, наполненной ртутью трубки, верхний конец которой запаян, а нижний находится в специальной чашечке с ртутью.
  • Барометр-анероид – является безвоздушной металлической коробкой с волнообразными стенками.
  • Барограф – самопищущий прибор, который применяют для наблюдения за барометрическим давлением в определенные промежутки времени.
  • Электронный барометр – цифровой прибор, работающий по принципу обычного анероида или по принципу измерения давления воздуха на чувствительный кристалл.

Ртутные барометры являются более точными и надежными по сравнению с анероидами, по ним проверяют работу других видов барометров. Высота давления в них определяется по высоте столба ртути. Метеорологические станции оборудованы чашечными барометрами.

Измерение атмосферного давления с помощью термогигрометра

Атмосферное давление измеряется не только с помощью различных видов барометров, но и такими универсальными цифровыми приборами, как термогигрометры. Несмотря на то, что основная задача данных устройств – определение относительной влажности и температуры, они прекрасно справляются и с измерением давления воздуха, показывая максимально точные величины. Поэтому такие многофункциональные приборы приобрести намного выгоднее, чем устаревшие барометры и психрометры.

АО «ЭКСИС» предлагает Вашему вниманию огромный ассортимент электронных измерителей давления и других контрольно-измерительных приборов высокого качества и всегда по доступным ценам.

В частности, в нашей копании Вы сможете приобрести следующие модели термогигрометров:

  • Термогигрометр ИВТМ-7 М 2-Д-В. Прибор, помимо измерения и регистрации температуры и относительной влажности воздуха и других неагрессивных газов, измеряет атмосферное давление в миллиметрах ртутного столба и гПа, может регистрировать данные в энергонезависимой памяти, пересчитывать результаты измерений в различные единицы (процент относительной влажности, г/м3), осуществлять одновременную индикацию измеряемых значений. ИВТМ-7 М 2-Д-В обладает высокой степенью пылевлагозащиты (IP65), благодаря чему возможно его использование в помещениях с повышенной влажностью.
  • Термогигрометр ИВТМ-7 К-1. Прибор измеряет атмосферное давление в кПа, может пересчитывать значения различных единиц влажности, осуществлять одновременную индикацию измеряемых значений, регистрировать данные на microSD, возможно подключение различных типов первичных преобразователей.
  • Термогигрометр ИВТМ-7 Р-03-И-Д. Прибор оснащен жидкокристаллическим индикатором, предназначенным для визуального контроля значений относительной влажности, температуры и давления. Имеет малые габариты и эргономичный корпус.
  • Термогигрометр ИВТМ-7 М 6-Д (в эргономичном корпусе). Прибор измеряет атмосферное давление в кПа, может регистрировать данные на энергонезависимой карте памяти, пересчитывать результаты измерений в различные единицы, осуществлять одновременную индикацию измеряемых значений. Имеет эргономичный корпус, большой и удобный дисплей.
  • Термогигрометр ИВТМ-7 М 3-Д-В. Прибор, помимо измерения и регистрации температуры и относительной влажности воздуха и других неагрессивных газов, измеряет атмосферное давление в миллиметрах ртутного столба и гПа, может регистрировать данные в энергонезависимой памяти, пересчитывать результаты измерений в различные единицы (процент относительной влажности, г/м3), осуществлять одновременную индикацию измеряемых значений. Модель ИВТМ-7 М3-Д-В предназначена для создания измерительной сети. Степень влагозащиты корпуса и датчика IP65, благодаря чему возможно его использование в помещениях с повышенной влажностью.
  • Термогигрометр ИВТМ-7 М 6-Д. Прибор измеряет атмосферное давление в кПа, может регистрировать данные на энергонезависимой карте памяти (microSD), пересчитывать результаты измерений в различные единицы, осуществлять одновременную индикацию измеряемых значений.
Читайте также:  Высокое нижнее давление при нормальном нижнем

Все модели термогигрометров имеют интерфейс связи с ПК посредством USB, RS-232 и могут крепиться к стене.

Источник

Измерение давления — атмосферное, абсолютное, избыточное давление

Измерение давления необходимо для управления технологическими процессами и обеспечения безопасности производства. Кроме того, этот параметр используется при косвенных измерениях других технологических параметров: уровня, расхода, температуры, плотности и т. д. В системе СИ за единицу давления принят паскаль (Па).

В большинстве случаев первичные преобразователи давления имеют неэлектрический выходной сигнал в виде силы или перемещения и объединены в один блок с измерительным прибором. Если результаты измерений необходимо передавать на расстояние, то применяют промежуточное преобразование этого неэлектрического сигнала в унифицированный электрический или пневматический. При этом первичный и промежуточный преобразователи объединяют в один измерительный преобразователь.

Приборы для измерения давления делятся на: деформационные, жидкостные и мембранные. В основном используются деформационные приборы. Для измерения давления используют манометры, вакуумметры, мановакуумметры, напоромеры, тягомеры, тягонапоромеры, датчики давления, дифманометры.

Различают следующие виды давления: — атмосферное; — абсолютное; — избыточное; — вакуум (разрежение). Атмосферное (барометрическое) давление Ратм – давление, создаваемое массой воздушного столба земной атмосферы. Абсолютное давление Рабс – давление, отсчитанное от абсолютного нуля. За начало отсчёта абсолютного давления принимают давление внутри сосуда, из которого полностью откачан воздух. Также под абсолютным давлением понимается полное давление, которое равно сумме атмосферного и избыточного Рабс=Ри + Ратм. Избыточное давление – разность между абсолютным и атмосферным давлениями Ри = Рабс — Ратм (избыточное давление всегда выше атмосферного). Вакуум (разрежение) — разность между атмосферным и абсолютным давлениями РВ=Ратм — Рабс (вакуумметрическое давление всегда ниже атмосферного).

Закон РК «Об обеспечении единства измерений» 2000г. Закон РК «О техническом регулировании» 2007г.

Закон РК «Об обеспечении единства измерений» 2000г состоит из 7 глав и 31 статьи. В главе 1 описываются основные понятия, используемые в данном законе. В главе 2 предоставляется информация о государственной системе обеспечения единства измерений, т.е. про метрологическиую службу РК, нормативные правовые акты и нормативные документы, государственные эталоны разных величин. В главе 3 происходит разбор структуры метрологической службы РК и службы обеспечения единства измерений. В главе 4 установлены правила конроля, производства, ремонта, проверки и калибровки средств измерений на территории РК. В главе 5 описываются цель государственнного метрологического контроля, объекты гос.метрологического контроля, сфера гос.метр.контроля. В главе 6 предоставлена информация об ответственности за нарушение законодательства РК об обеспечении единства измерений и о решении споров. В главе 7 речь идет о финансировании работ по обеспечению единства измерений. Закон утвержден президентом РК Н.А.Назарбаевым.

Читайте также:  Давление всасывания воздушного компрессора

Закон РК «О техническом регулировании» состоит из 8 глав и 46 основных статей и 1 статьи по порядку введения в действие настоящего Закона. В главе 1 приведены общие сведения о понятиях, используемых в настоящем законе. В главе 2 приведены технические регламенты о техн.регулировании. В главе 3 речь идет о стандартизации нормативных документов и национальных стандартах. Глава 4-подтверждение соответствия продукции и процессов установленным требованиям. Глава 5-аккредитация органов по подтверждению соответствия и лабораторий. В шестой главе идет речь о гос.контроле за соблюдением требований, установленных техническими регламентами. Глава 7-ответственность гос.органов и должностных, физических и юридических лиц за несоблюдение законодательства. Глава 8-заключительные и переходных положения.

Билет 20

Логарифмическая шкала в измерении: по основанию 10, по основанию e, по основанию 2. Уровни P, U, I.

Логарифмическая или гиперболическая шкала — шкала с сужающимися делениями. Этот вид шкал используется достаточно часто, особенно когда речь идёт о научных исследованиях. Она используется для отображения широко диапазона величин, когда значения, которые попадают на график отличаются на много порядков. То есть когда мы хотим одновременно видеть и значения 0.1, 0.2 и значения 100, 200 на одном графике. Зачастую это связанно с физикой процесса. Так, например, в музыке ноты, различающиеся по частоте в два раза это ноты на октаву выше (Ля и Ля следующей октавы). Чтобы показать частоты двух нот будет удобно использовать логарифмическую шкалу.

Сигналы, используемые для передачи сообщений в системах электросвязи, представляют собой электрические напряжение или ток, изменяющиеся во времени. Характер изменений мгновенных значений напряжения или тока сигнала однозначно соответствует передаваемым сообщениям.

Значения напряжений (токов) сигналов и помех в различных точках каналов и трактов имеют величины от пиковольт (пикоампер) до десятков вольт (ампер) Мощности токов имеют величины от долей пиковатт до ватт, киловатт и даже мегаватт. Чтобы облегчить измерения и расчеты величин, значения которых изменяются в широком диапазоне и чтобы при сравнении результатов измерений или расчетов операции умножения и деления заменить соответственно сложением и вычитанием, вместо величин мощности, напряжения и тока, выраженных в ваттах, вольтах и амперах (или их долях), используют логарифмы отношения этих величин к одноименным величинам, принятым за отсчетные. Относительные величины, выраженные в логарифмической форме называют уровнями передачи. Уровни передачи, представляющие десятичные логарифмы отношения одноименных величин, называются децибелами (дБ), а уровни передачи, представляющие натуральные логарифмы отношения одноименных величин, называются неперами (Нп). В технике телекоммуникационных систем в основном принято пользоваться децибелами.

Уровни передачи по мощности, напряжению и току определяются следующими формулами соответственно:

В этих формулах Рх, Uх, Iхвеличины кажущейся мощности, напряжения или тока в рассматриваемой точке, а Р, U и I — величины, принятые за исходные при определении уровней передачи. Уровни называются абсолютными, если за исходное приняты следующие величины: кажущаяся мощность W=1 мВт; дей­ствующее напряжение U=0,775 В; действующий ток I=1,29 мА. Относительным называется уровень, при котором значения P,I,U будут соответствовать значениям P,I,U в другой точке цепи. Измерительным уровнем называется абсолютный уровень в какой либо точке системы при условии подачи сигнала с нулевым уровнем на вход.

Читайте также:  При шейном остеохондрозе повышенное давление что делать

Дата добавления: 2018-04-04 ; просмотров: 374 ;

Источник

Часто задаваемые вопросы о давлении и важности абсолютного давления

Ответы на вопросы об основах измерения давления, в том числе, почему измерение манометрического давления является прекрасным для большинства применений, но в некоторых случаях требуется измерение абсолютного давления.

Что такое давление?

Давление обычно определяется как сила, которая действует равномерно по определенной области. Например, когда вы нажимаете кнопку на дверном звонке, давление вашего пальца прикладывает физическую силу, которая приводит в действие электрический выключатель в дверном звонке, который затем посылает сигнал на динамик. В промышленных применениях сила, которая воздействует на область, обычно представляет собой газ или жидкость, но она также может быть твердой.

Почему мы измеряем давление?

Мониторинг давления является неотъемлемой частью современного общества. По всему миру бесчисленные датчики давления постоянно обеспечивают показания давления на нефтеперерабатывающих заводах, производственных объектах, домах и транспортных средствах. Это делается для обеспечения того, чтобы давление находилось в допустимых пределах и, если нет, чтобы предупредить операторов об исправлении ситуации.

Что такое абсолютное давление, и как это соотносится с избыточным давлением?

Чтобы понять абсолютное давление, нужно сначала определить несколько терминов:

  • Атмосферное давление. Все вокруг нас — воздух и вода — имеет вес и создает давление. На уровне моря среднее давление составляет 1 атм, или 1,01325 бар; давление изменяется в зависимости от погодных условий. По мере увеличения высоты воздух становится тоньше, равно атмосферное давление.
  • Манометрическое давление. Ноль в манометрическом давлении представляет собой атмосферное давление, что означает, что показание избыточного давления включает только дополнительное давление внутри системы.
  • Абсолютное давление. Ноль в абсолютном давлении является идеальным вакуумом, что означает, что абсолютное считывание давления включает в себя как атмосферное давление, так и манометрическое давление.

Важным отличием последних двух типов давления является нулевая ссылка. Ноль инструментов, измеряющих избыточное давление, представляет собой атмосферный воздух, который изменяется в зависимости от высоты и погодных условий. Ноль в приборах, измеряющих абсолютное давление, — это полное отсутствие давления или вакуум; поэтому этот ноль не меняется.

Каковы преимущества измерения абсолютного давления и избыточного давления?

Поскольку все объекты и процессы на заводе-изготовителе имеют одинаковую высоту и атмосферное давление, измерение избыточного давления является достаточно точным для большинства ситуаций. Тем не менее, измерения абсолютного давления требуются в специализированных ситуациях, например, когда вам требуется измерение давления, независимо от колебаний атмосферного давления, а также на промышленных предприятиях, где используются вакуумные насосы и машины вакуумной упаковки.

Абсолютные манометры и датчики присутствуют в многочисленных применениях, включая высотомеры для авиации, мониторы для давления жидкого пара, процессы перегонки, HVAC и производство полупроводников. Давление опасных арсиновых и фосфиновых газов, используемых в процессе производства полупроводников, должно тщательно контролироваться во время хранения и транспортировки. Поскольку атмосферные условия колеблются, важно следить за тем, чтобы опасные газы использовали контрольную точку, которая не изменяется.

Как работают абсолютные манометры?

Абсолютные манометры включают внутреннюю вакуумную камеру, которая используется в качестве эталона для проведения измерений давления. Манометрические датчики абсолютного давления на основе диафрагмы имеют прочную, но гибкую панель, которая разделяет камеру и вакуумную камеру. Локальное атмосферное давление заставляет диафрагму деформироваться в вакуумную камеру. Величина деформации преобразуется в значение давления. Это значение затем указывается на табло индикатора.

Узнайте больше о давлении и различных приложениях для измерения давления, обратившись к нашим консультантам по телефону +7 (831) 218-05-61.

Источник

Adblock
detector