Адиабатическое расширение против внешнего давления
Первый закон (первое начало) термодинамики — это, фактически, закон сохранения энергии. Он утверждает, что
энергия изолированной системы постоянна. В неизолированной системе энергия может изменяться за счет: а) совершения работы над окружающей средой; б) теплообмена с окружающей средой.
Для описания этих изменений вводят функцию состояния — внутреннюю энергию U и две функции перехода — теплоту Q и работу A. Математическая формулировка первого закона:
dU = Q — A (дифференциальная форма) (2.1)
U = Q — A (интегральная форма) (2.2)
Буква в уравнении (2.1) отражает тот факт, что Q и A — функции перехода и их бесконечно малое изменение не является полным дифференциалом.
В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.
Существуют разные виды работы: механическая, электрическая, магнитная, поверхностная и др. Бесконечно малую работу любого вида можно представить как произведение обобщенной силы на приращение обобщенной координаты, например:
Aмех = p . dV; Aэл = . dе; Aпов = . dW (2.3)
( — электрический потенциал, e — заряд, — поверхностное натяжение, W — площадь поверхности). С учетом (2.3), дифференциальное выражение первого закона можно представить в виде:
dU = Q — p . dV Aнемех (2.4)
В дальнейшем изложении немеханическими видами работы мы будем, по умолчанию, пренебрегать.
Механическую работу, производимую при расширении против внешнего давления pex, рассчитывают по формуле:
A = (2.5)
Если процесс расширения обратим, то внешнее давление отличается от давления системы (например, газа) на бесконечно малую величину: pex = pin — dp и в формулу (2.5) можно подставлять давление самой системы, которое определяется по уравнению состояния.
Проще всего рассчитывать работу, совершаемую идеальным газом, для которого известно уравнение состояния p = nRT / V (табл. 1).
Таблица 1. Работа идеального газа в некоторых процессах расширения V1 V2:
Расширение в вакуум
Расширение против постоянного внешнего давления p
Изотермическое обратимое расширение
Адиабатическое обратимое расширение
При обратимом процессе совершаемая работа максимальна.
Теплота может переходить в систему при нагревании. Для расчета теплоты используют понятие теплоемкости, которая определяется следующим образом:
C = (2.6)
Если нагревание происходит при постоянном объеме или давлении, то теплоемкость обозначают соответствующим нижним индексом:
CV = ; Cp =
. (2.7)
Из определения (2.6) следует, что конечную теплоту, полученную системой при нагревании, можно рассчитать как интеграл:
Q = (2.8)
Теплоемкость — экспериментально измеряемая экстенсивная величина. В термодинамических таблицах приведены значения теплоемкости при 298 К и коэффициенты, описывающие ее зависимость от температуры. Для некоторых веществ теплоемкость можно также оценить теоретически методами статистической термодинамики (гл. 12). Так, при комнатной температуре для одноатомных идеальных газов мольная теплоемкость CV = 3/2 R, для двухатомных газов CV = 5/2 R.
Теплоемкость определяется через теплоту, переданную системе, однако ее можно связать и с изменением внутренней энергии. Так, при постоянном объеме механическая работа не совершается и теплота равна изменению внутренней энергии: QV = dU, поэтому
CV = . (2.9)
При постоянном давлении теплота равна изменению другой функции состояния, которую называют энтальпией:
Qp = dU + pdV = d (U+pV) = dH, (2.10)
где H = U+pV — энтальпия системы. Из (2.10) следует, что теплоемкость Cp определяет зависимость энтальпии от температуры.
Cp = . (2.11)
Из соотношения между внутренней энергией и энтальпией следует, что для моля идеального газа
Внутреннюю энергию можно рассматривать, как функцию температуры и объема:
(2.13)
Для идеального газа экспериментально обнаружено, что внутренняя энергия не зависит от объема, , откуда можно получить калорическое уравнение состояния:
(2.14)
В изотермических процессах с участием идеального газа внутренняя энергия не изменяется, и работа расширения происходит только за счет поглощаемой теплоты.
Возможен и совсем иной процесс. Если в течение процесса отсутствует теплообмен с окружающей средой ( Q = 0), то такой процесс называют адиабатическим. В адиабатическом процессе работа может совершаться только за счет убыли внутренней энергии. Работа обратимого адиабатического расширения идеального газа:
A = — U = nCV (T1—T2) (2.15)
(n — число молей, CV — мольная теплоемкость). Эту работу можно также выразить через начальные и конечные давление и объем:
A = (2.16)
где = Cp / CV.
При обратимом адиабатическом расширении идеального газа давление и объем связаны соотношением (уравнением адиабаты):
pV = const. (2.17)
В уравнении (2.17) важны два момента: во-первых, это уравнение процесса, а не уравнение состояния; во-вторых, оно справедливо только для обратимого адиабатического процесса. Это же уравнение можно записать в эквивалентном виде:
TV -1 = const, (2.18)
T p 1- = const. (2.19)
ПРИМЕРЫ
Пример 2-1. Рассчитайте изменение внутренней энергии гелия (одноатомный идеальный газ) при изобарном расширении от 5 до 10 л под давлением 196 кПа.
Решение. p1 = p2 = 196 кПа, V1 = 5 л, V2 = 10 л. Начальная и конечная температуры: T1 = p1V1 / nR, T2 = p2V2 / nR. Изменение внутренней энергии идеального газа определяется только начальной и конечной температурой (CV = 3/2 nR — идеальный одноатомный газ):
U = CV (T2—T1) = 3/2 nR (T2—T1) = 3/2 (p2V2 — p1V1) = 3/2 (196 . 10 3 ) (10-5) . 10 -3 =
= 1470 Дж.
Пример 2-2. Используя первый закон и определение теплоемкости, найдите разность изобарной и изохорной теплоемкостей для произвольной термодинамической системы.
Решение. В определение теплоемкости (2.6) подставим дифференциальное представление первого закона (2.1) и используем соотношение (2.13) для внутренней энергии как функции температуры и объема:
Отсюда при постоянном давлении получаем:
Пример 2-3. Один моль ксенона, находящийся при 25 о С и 2 атм, расширяется адиабатически: а) обратимо до 1 атм, б) против давления 1 атм. Какой будет конечная температура в каждом случае?
Решение. а) Исходный объем ксенона (n = 1):
Конечный объем можно найти из уравнения адиабаты (для одноатомного идеального газа = Cp / CV = 5/3):
Конечную температуру находим по уравнению состояния идеального газа (p2 = 1 атм):
б) При необратимом расширении против постоянного внешнего давления уравнение адиабаты неприменимо, поэтому надо воспользоваться первым законом термодинамики. Работа совершается за счет убыли внутренней энергии:
A = — U = nCV (T1—T2),
где n = 1, CV = 3/2 R (одноатомный идеальный газ). Работа расширения против постоянного внешнего давления p2 равна:
Приравнивая последние два выражения, находим температуру T2:
Температура выше, чем при обратимом расширении, т.к. в обратимом случае совершается бМльшая работа, расходуется больше внутренней энергии и температура понижается на большую величину.
Ответ. а) 225 К; б) 238 К.
Пример 2-4. Один моль водяных паров обратимо и изотермически сконденсировали в жидкость при 100 о С. Рассчитайте работу, теплоту, изменение внутренней энергии и энтальпии в этом процессе. Удельная теплота испарения воды при 100 о С равна 2260 Дж/г.
Решение. В процессе
H2O(г) H2O(ж)
произошло обратимое сжатие газа при постоянном давлении p = 1 атм от объема V1 = nRT / p = 0.082 . 373 = 30.6 л до объема одного моля жидкой воды V2
0.018 л. Работа сжатия при постоянном давлении равна:
A = p (V2—V1) —pV1 = -101.3 кПа 30.6 л = -3100 Дж.
При испарении одного моля воды затрачивается теплота 2260 Дж/г 18 г = 40700 Дж, поэтому при конденсации одного моля воды эта теплота, напротив, выделяется в окружающую среду:
Изменение внутренней энергии можно рассчитать по первому закону:
U = Q — A = -40700 — (-3100) = -37600 Дж,
а изменение энтальпии — через изменение внутренней энергии:
H = U + (pV) = U + p V = U + A = Q = -40700 Дж.
Изменение энтальпии равно теплоте, т.к. процесс происходит при постоянном давлении.
Ответ. A = -3100 Дж, Q = H = -40700 Дж, U = -37600 Дж.
ЗАДАЧИ
2-1. Газ, расширяясь от 10 до 16 л при постоянном давлении 101.3 кПа, поглощает 126 Дж теплоты. Определите изменение внутренней энергии газа.
2-2. Определите изменение внутренней энергии, количество теплоты и работу, совершаемую при обратимом изотермическом расширении азота от 0.5 до 4 м 3 (начальные условия: температура 26.8 о С, давление 93.2 кПа).
2-3. Один моль идеального газа, взятого при 25 o C и 100 атм, расширяется обратимо и изотермически до 5 атм. Рассчитайте работу, поглощенную теплоту, U и H.
2-4. Рассчитайте изменение энтальпии кислорода (идеальный газ) при изобарном расширении от 80 до 200 л при нормальном атмосферном давлении.
2-5. Какое количество теплоты необходимо для повышения температуры 16 г кислорода от 300 до 500 К при давлении 1 атм? Как при этом изменится внутренняя энергия?
2-6. Объясните, почему для любой термодинамической системы Cp > CV.
2-7. Чайник, содержащий 1 кг кипящей воды, нагревают до полного испарения при нормальном давлении. Определите A, Q, U, H для этого процесса. Мольная теплота испарения воды 40.6 кДж/моль.
2-8. Определите конечную температуру и работу, необходимую для адиабатического сжатия азота от 10 л до 1 л, если начальные температура и давление равны 26.8 о С и 101.3 кПа, соответственно.
2-9. Три моля идеального одноатомного газа (CV = 3.0 кал/(моль . К)), находящегося при T1 = 350 K и P1 = 5 атм, обратимо и адиабатически расширяются до давления P2 = 1 атм. Рассчитайте конечные температуру и объем, а также совершенную работу и изменение внутренней энергии и энтальпии в этом процессе.
2-10. Система содержит 0.5 моль идеального одноатомного газа (CV = 3.0 кал/(моль . К)) при P1 = 10 атм и V1 = 1 л. Газ расширяется обратимо и адиабатически до давления P2 = 1 атм. Рассчитайте начальную и конечную температуру, конечный объем, совершенную работу, а также изменение внутренней энергии и энтальпии в этом процессе. Рассчитайте эти величины для соответствующего изотермического процесса.
2-11. Рассчитайте количество теплоты, необходимое для нагревания воздуха в квартире общим объемом 600 м 3 от 20 о С до 25 о С. Примите, что воздух — это идеальный двухатомный газ, а давление при исходной температуре нормальное. Найдите U и H для процесса нагревания воздуха.
2-12. Человеческий организм в среднем выделяет 10 4 кДж в день благодаря метаболическим процессам. Основной механизм потери этой энергии — испарение воды. Какую массу воды должен ежедневно испарять организм для поддержания постоянной температуры? Удельная теплота испарения воды — 2260 Дж/г. На сколько градусов повысилась бы температура тела, если бы организм был изолированной системой? Примите, что средняя масса человека — 65 кг, а теплоемкость равна теплоемкости жидкой воды.
2-13. Один моль паров брома обратимо и изотермически сконденсировали в жидкость при 59 о С. Рассчитайте работу, теплоту, изменение внутренней энергии и энтальпии в этом процессе. Удельная теплота испарения брома при 59 о С равна 184.1 Дж/г.
2-14. Один моль идеального одноатомного газа вступает в следующий замкнутый цикл:
Процесс 1 2 — изотермический, 3 1 — адиабатический. Рассчитайте объемы состояний 2 и 3, а также температуры состояний 1, 2 и 3, считая стадии 1 2 и 3 1 обратимыми. Рассчитайте U и H для каждой стадии.
2-15. Придумайте циклический процесс с идеальным газом, состоящий из четырех стадий. Изобразите этот процесс в координатах p — V. Рассчитайте полное изменение внутренней энергии, а также теплоту и совершенную газом работу.
2-16. Один моль фтороуглерода расширяется обратимо и адиабатически вдвое по объему, при этом температура падает от 298.15 до 248.44 К. Чему равно значение CV?
2-17. Докажите соотношение (2.16) для работы обратимого адиабатического процесса.
2-18. Один моль метана, взятый при 25 о С и 1 атм, нагрет при постоянном давлении до удвоения объема. Мольная теплоемкость метана дается выражением:
Рассчитайте U и H для этого процесса. Метан можно считать идеальным газом.
2-19. Выведите уравнение для обратимого адиабатического сжатия неидеального газа, если уравнение состояния одного моля газа имеет вид:
2-20*. Используя уравнение состояния и первый закон термодинамики, выведите уравнение адиабаты для газа Ван-дер-Ваальса.