Меню

Активное и пассивное давление на грунт определение

Понятие об активном и пассивном давлении грунта

Давление грунта на подпорную стенку зависит от направления, величины и характера ее смещения.

Если подпорная стенка под действием давления грунта не имеет возможности смещаться (например, фундамент коробчатого сечения или стенка подземного резервуара), то давление, оказываемое на стенку со стороны грунта, называют давлением покоя(рис. 7.2). Оно может быть определено через коэффициент бокового давления:

, (7.1)

где s – ордината давления покоя; g – удельный вес грунта; n – коэффициент Пуассона грунта; z – ордината точки, в которой определяется давление.

Эпюра давления грунта на стенку будет иметь вид треугольника, и при высоте стенки h равнодействующая эпюры давления покоя определится как

. (7.2)

Рис. 7.2. Действие давления покоя на неподвижную

Под действием давления грунта возможно смещение стенки в сторону от засыпки. При этом в грунте засыпки формируется область обрушения грунта, граница которой называется поверхностью скольжения, а сама область – призмой обрушения. Давление, которое испытывает стенка со стороны грунта в этом случае, называется активным давлением. Ордината активного давления обозначается sа , а ее равнодействующая – Еа.

Если под действием каких-то сил подпорная стенка смещается в сторону грунта, в засыпке образуются поверхности скольжения и формируется призма выпирания грунта. При этом давление грунта достигает максимального значения и называется пассивным давлением (отпором). Ордината пассивного давления обозначается sр , а ее равнодействующая – Ер.

Развитие в грунте засыпки активного и пассивного давления на подпорную стенку показано на рис. 7.3.

Рис. 7.3. Развитие активного и пассивного давления на подпорную стену: 1 – призма обрушения; 2 – призма выпирания

Формирование активного, пассивного давления и давления покоя на ограждающую конструкцию может быть проиллюстрировано графиком, представленным на рис. 7.4.

Рис. 7.4. Формирование активного, пассивного давления

и давления покоя на ограждающую конструкцию

Как показывают эксперименты, для полного формирования призмы обрушения и развития активного давления на подпорную стенку требуются очень небольшие перемещения стенки. Напротив, образование призмы выпирания и развитие пассивного давления происходят при значительно больших значениях перемещений стенки.

Согласно [9] принято, что при горизонтальных перемещениях подпорной стенки менее 0,0005h, где h — высота конструкции, давление грунта принимается равным давлению покоя.

При горизонтальных перемещениях подпорной стенки более 0,0005h зависимость величин бокового давления грунта соответствует диаграмме на рис.7.4. Боковое давление грунта становится равным активному давлению, если величина горизонтального перемещения конструкции в направлении от грунта превышает 0,001h. Пассивное давление начинает действовать, когда величина горизонтального перемещения конструкции в направлении на грунт превышает 0,01h для влажных грунтов и 0,02h для водонасыщенных грунтов.

Так как в пределах призмы обрушения и призмы выпирания возникает предельное состояние грунта, задача определения активного и пассивного давления на подпорную стенку решается методами теории предельного равновесия. При этом поверхности скольжения приобретают сложное криволинейное очертание вследствие трения грунта о стенку. Точное определение очертаний линий скольжения связано со значительными математическими трудностями. Точное решение для общего случая давления грунта на подпорную стенку было получено проф. В.В. Соколовским.

Ввиду сложности точного решения для многих практических задач вместо криволинейных поверхностей скольжения принимают плоские. Этот метод был предложен еще Ш. Кулоном (1773 г.). Метод Кулона основан на следующих допущениях:

— поверхности скольжения плоские;

— призма обрушения соответствует максимальному давлению грунта на подпорную стенку;

— трение грунта призмы обрушения о стенку отсутствует;

— стенка абсолютно жесткая.

При определении активного давления метод Кулона дает результаты, близкие к строгим решениям. При определении пассивного давления получается завышенный результат, причем погрешность возрастает с увеличением угла внутреннего трения грунта. В этом случае лучше пользоваться методами, основанными на предположении криволинейных поверхностей скольжения или на теории предельного равновесия.

Источник

Активное и пассивное давление грунтов на подпорные стены. – 115

Активным давлением называется давление грунта на конструкцию (подпорную стенку). В этом случае конструкция воспринимает давление грунта и может получить наиболее вероятные смещения (1, 2), обозначенные на нижнем рисунке с левой стороны. Пассивное давление или отпор в грунте возникает тогда, когда конструкция оказывает давление на грунт (опорный фундамент арки). Такая схема работы основания представлена на нижнем рисунке с правой стороны. Схема воздействия активного давления грунта на подпорную стенку и возникновения пассивного отпора при давлении фундамента на грунт. Определение величин активного давления грунта и пассивного отпора является одной из важнейших задач механики грунтов при решении ряда инженерных задач, и, прежде всего, устойчивости подпорных стен.

Читайте также:  Головокружение давление двоение в глазах

Давление грунта на стену:а — активное; б — пассивное:1 — положение до начала перемещения стены; 2 — положение после перемещения стены; 3 — напрваление перемещения стены;

21 Аналитический метод расчета давления грунта на жесткую подпорную стену (грунт связанный, стена вертикальная, на поверхность засыпки пригрузка). – 116

В данном разделе рассмотрим аналитический метод определения давления грунтов на подпорные стенки при допущении плоских поверхностей скольжения. Этот метод в настоящее время наиболее широко применяется в практике проектирования.

Рассмотрим вначале давление на подпорные стенки сыпучих масс. Как было показано ранее, массив сыпучего грунта, ограниченный откосом, будет находиться в равновесии, если угол откоса равен углу внутреннего трения грунта. При вертикальном же откосе для удержания массива в равновесии требуется устройство подпорной стенки.

Если одна часть массива сыпучего грунта перемешается относительно другой по некоторой поверхности скольжения, то реакция неподвижной части массива будет направлена навстречу движению под углом трения, отложенным от нормали к поверхности скольжения. Рассмотрим наиболее характерные случаи давления грунтов на подпорные стенки.

Основной случай — вертикальная гладкая стенка с горизонтальной поверхностью засыпки (рис. 162). Будем считать, что стенка жесткая и неподвижная; трением грунта о
стенку пренебрегаем. При сделанных ограничениях напряженное состояние грунта за подпорной стенкой будет совершенно одинаково с напряженным состоянием бесконечно распространенного слоя грунта. Для решения вопроса о давлении грунта на стенку можно применить следующий метод. Так как поверхность грунта горизонтальна, то горизонтальная площадка, выделенная на некоторой глубине от незагруженной поверхности грунта, будет испытывать только сжимаюшее давление (нормальное главное напряжение!), которое в рассматриваемом случае разно произведению объемного веса грунта на высоту столба грунта от поверхности до рассматриваемой площадки, т. е. Gi=yz

где у— объемный вес грунта; z — глубина рассматриваемой точки от горизонтальной поверхности засыпки.

Боковое дазление грунта при гладкой вертикальной стенке будет разно наименьшему главному напряжению сь при действии собственного веса грунта как сплошной нагрузки.
Обозначим боковое давление через и для определения его воспользуемся соотношением между главными напряжениями соответствующим состоянию предельного равновесия
грунта за подпорной стенкой, соответствующего возникновению поверхностей скольжения.

Действительно будет уравнение (44й )*. т. е.

Из уравнения (б)

или.подставляя значение а: из выражения (а), получим

3 случае же пассивного давления грунта, т. е. когда верх стенки будет перемешаться по направлению к грунту, аналогично предыдущему получим

Рис. 4. Зависимость пассивного давления от перемещения стены

Определение предельных значений давления грунта на вертикальные стены.

Предельные значения давления грунта на вертикальные стены, вызванные удельным весом, равномерной вертикальной поверхностной нагрузкой q и сцеплением с могут быть определены по формулам:

активное предельное состояние

gta(z) = sa × tgd + a (положительно для движения грунта вниз);

пассивное предельное состояние

tp(z) = sp × tgd+ a (положительно для движения грунта вверх),

где Ka;h и Kp;h – соответственно, коэффициенты горизонтального активного и пассивного давления;

s(z) и t(z) – нормальные и касательные напряжения на глубине z;

d – угол сопротивления сдвигу грунта по стене.

Приводятся графики для определения коэффициентов Ka;h и Kp;h. На рис. 2 и 3 приведены графики для совершенно гладкой стены (d = 0).

Читайте также:  Продажа шлангов высокого давления в чебоксарах

Требования, необходимые при проектировании фундаментов. – 117

Фундаменты устраиваются для передачи нагрузок от конструкций зданий и сооружений, установленного в них технологического и другого оборудования и полезных нагрузок на грунты основания. Основание, воспринимая эти нагрузки, претерпевает, как правило, неравномерные деформации, что вызывает появление в конструкциях дополнительных перемещений и усилий.
Работы по устройству оснований и фундаментов без проекта производства работ не допускаются.
Очередность и способы производства работ должны быть увязаны с работами по прокладке подземных инженерных коммуникаций, строительству подъездных дорог на стройплощадке и другими работами нулевого цикла.
При устройстве оснований, фундаментов и подземных сооружений необходимость водопонижения, уплотнения и закреплении грунта, устройства ограждения котлована, замораживания грунта, возведения фундаментов методом «стена в грунте» и проведения других работ устанавливают проектом сооружения, а организацию работ — проектом организации строительства.
При расчете жестких фундаментов принята линейная зависимость распределений напряжений под подошвой фундамента.
При расчете фундаментов конечной жесткости (гибких фундаментов- балок и плит) условная линейная эпюра распределения напряжений под подошвой гибкого фундамента не приемлема.
В этом случае необходимо учитывать M и Q, возникающие в самой конструкции фундамента, вследствие действия неравномерных контактных реактивных напряжений по подошве фундамента. Не учет возникающих усилий может привести к неправильному выбору сечения фундамента или % его армирования.
Поэтому необходимо решать задачу совместной работы фундаментной конструкции и сжимаемого основания.
Таким образом, при расчете гибких фундаментов необходимо одновременно учитывать и деформации фундамента (конструкция) и его осадки (грунт).

На основании вышеизложенного можно сформулировать общие требования, предъявляемые в действующих нормативных документах к проектированию оснований и фундаментов:
· обеспечение прочности и эксплуатационных параметров зданий и сооружений (общие и неравномерные деформации не должны превышать допустимых величин);
· максимальное использование прочностных и деформационных свойств грунтов основания, а также прочности материала фундамента;
· достижение минимальной стоимости, материалоемкости и трудоемкости, сокращение сроков строительства.
Соблюдение этих положений основывается на выполнении указанных ниже условий:
· комплексный учет при выборе типа оснований и фундаментов инженерно-геологических и гидрогеологических условий строительной площадки;
· учет влияния конструктивных и технологических особенностей сооружения на его чувствительность к неравномерным осадкам;
· оптимальный выбор методов выполнения работ по подготовке оснований, устройству фундаментов и подземной части сооружений;
· расчет и проектирование оснований и фундаментов с учетом совместной работы системы «основание — фундаменты — конструкции сооружения».
Таким образом, проектирование оснований и фундаментов состоит в выборе типа основания (естественное или искусственное), конструктивного решения (в том числе материала) и размеров фундаментов (глубина заложения, размеры площади подошвы и т. д.), а также определении мероприятий, применяемых для уменьшения влияния деформаций основания на эксплуатационную пригодность и долговечность сооружения.

Основания и фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) нагрузок, действующих на фундаменты;

д) окружающей застройки и влияния на нее вновь строящихся сооружений;

е) экологических требований (раздел 15);

ж) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других подземных конструкций.

4.2. При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3. Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в Приложении Б.

4.4. При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I — повышенный, II — нормальный, III — пониженный.

Читайте также:  Как изменится атмосферное давление с наступлением холодной погоды почему

4.5. Инженерные изыскания для строительства, проектирование оснований и фундаментов и их устройство должны выполняться организациями, имеющими лицензии на эти виды работ.

4.6. Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Наименование грунтов оснований в описаниях результатов изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7. Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа основания, фундаментов и подземных сооружений и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование без соответствующего инженерно-геологического, а также инженерно-экологического обоснований или при их недостаточности не допускается.

Примечание. При строительстве в условиях существующей застройки инженерные изыскания следует предусматривать не только для вновь строящихся сооружений, но и для окружающей застройки, попадающей в зону их влияния.

4.8. Конструктивное решение проектируемого сооружения и условия последующей его эксплуатации необходимы для выбора типа фундамента, учета влияния конструкций на работу основания, а также на окружающую застройку, для уточнения требований к допускаемым деформациям и т.д.

4.9. В проектах оснований и фундаментов сооружений необходимо предусматривать проведение натурных наблюдений (мониторинг). Состав, объем и методы мониторинга устанавливают в зависимости от уровня ответственности сооружений и сложности инженерно-геологических условий (см. раздел 14).

Натурные наблюдения должны также предусматриваться в случае применения новых или недостаточно изученных конструкций сооружений или их фундаментов, а также если в задании на проектирование имеются специальные требования по проведению натурных измерений.

4.10. При проектировании и возведении фундаментов и подземных сооружений из монолитного, сборного бетона или железобетона, каменной или кирпичной кладки наряду с требованиями настоящих правил следует руководствоваться СНиП 2.03.11, СНиП 3.03.01, СНиП 3.04.01.

4.11. При возведении нового объекта на застроенной территории необходимо учитывать его воздействие на существующие сооружения окружающей застройки с целью предотвращения их недопустимых дополнительных деформаций.

Зону влияния проектируемого сооружения и дополнительные осадки существующих сооружений определяют расчетом (подраздел 5.5).

Предельные значения дополнительных деформаций оснований существующих сооружений должны устанавливаться на основе результатов обследований этих сооружений с учетом их конструктивных особенностей и категории состояния конструкций (Приложение В).

4.12. При проектировании необходимо учитывать местные условия строительства, а также имеющийся опыт проектирования, строительства и эксплуатации сооружений в аналогичных инженерно-геологических и экологических условиях. Для этого необходимо иметь данные об инженерно-геологических условиях этого района, о конструкциях сооружений, нагрузках, типах и размерах фундаментов, давлениях на грунты основания и о наблюдавшихся деформациях сооружений. Необходимо также выявлять данные о производственных возможностях строительной организации, ее парке оборудования, ожидаемых климатических условиях на весь период строительства. Указанные данные могут оказаться решающими при выборе типов фундаментов (например, на естественном основании или свайном), глубины их заложения, метода подготовки основания и пр.

Данные о климатических условиях района строительства должны приниматься в соответствии со СНиП 23-01.

4.13. При проектировании и устройстве оснований и фундаментов сооружений следует соблюдать требования нормативных документов по организации строительного производства, геодезическим работам, технике безопасности, правилам пожарной безопасности при производстве строительно-монтажных работ.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Adblock
detector