Меню

Акустическая мощность и уровень звукового давления

Раздел теории

Базовые понятия о звуке

Прежде чем мы начнем обсуждение связи между уровнем звуковой мощности и уровнем звукового давления, мы должны определить некоторые базовые понятия, такие как звуковое давление, звуковая мощность и частота.

Звуковое давление

Звуковые волны распостраняются в воздухе в виде колебаний давления. Наши уши воспринимают колебания давления как звук. Звуковое давление измеряется в паскалях (Па).

Наименьшее звуковое давление, которое воспринимает человеческое ухо — 2*10 -5 Па, является порогом слышимости. Самое сильное звуковое давление, которое может вынести ухо (болевой порог) — 20 Па, и это считается верхней границей слышимости. Большая числовая разница, измеряемая в Па, между порогом слышимости и болевым порогом создаёт неудобства при расчете. Поэтому используется логарифмическая шкала, которая основывается на отношении действительного уровня звукового давления к порогу слышимости. Эта шкала использует в качестве единицы измерения децибел (дБ), где 0 дБ соответствует порогу слышимости, а 120 дБ соответствуют болевому порогу.

Звуковое давление уменьшается с увеличением расстояния от источника звука и зависит от акустических характеристик помещения и места нахождения источника звука.

Звуковая мощность

Звуковая мощность определяется, как количество энергии, передаваемой в единицу времени (Вт), которую испускает источник звука. Звуковая мощность не может быть измерена непосредственно и вычисляется через звуковое давление. Существует логарифмическая шкала для мощности звука, аналогичная шкале звукового давления.

Звуковая мощность не зависит от места расположения источника звука или акустических характеристик помещения и поэтому ее удобно использовать для сравнения акустических характеристик различных вентиляторов.

Частота

Количество колебаний источника звука в единицу времени относительно среднего значения определяется частотой. Частота измеряется как количество колебаний в секунду, при этом одно колебание в секунду равно 1 Герц (Гц). Большее количество колебаний в секунду, т. е. более высокая частота, дает более высокий тон.

Частоты часто подразделяются на 8 групп, известных как полосы со среднегеометрическими частотами: 63 Гц, 125 Гц, 250 Гц, 500 Гц, 1000 Гц, 2000 Гц, 4000 Гц и 8000 Гц.

Уровень звуковой мощности и уровень звукового давления

На уровень звукового давления, создаваемого источником шума, оказывает влияние уровень звуковой мощности источника, коэффициент направленности (1), расстояние до источника (2) и звукопоглощающие характеристики помещения (3).

1) Коэффициент направленности, Q

Коэффициент направленности определяет, как звук распределяется от источника. Распространение звука во всех направлениях, сферическое, означает, что Q = 1. Для диффузора, расположенного в середине стены, направленность будет полусферической Q = 2.

Q = 1 В центре помещения
Q = 2 На стене или потолке
Q = 4 Торец стены и потолка
Q = 8 В углу
Рис. 1. Коэффициенты направленности для различно расположенных источников шума

2) Расстояние от источника шума, г

г — это расстояние до источника звука в метрах.

3) Эквивалентная площадь поглощения помещения, Aeqv

Способность материалов поглощать звук называется коэффициентом поглощения а. Коэффициент поглощения может иметь значения от 0 до 1, где значение 1 соответствует полностью поглощающей поверхности, а значение 0 — полностью отражающей поверхности.

Эквивалентная площадь поглощения помещения измеряется в м2 и может быть рассчитана путем умножения площади поверхностей помещения на их соответствующие коэффициенты поглощения.

Во многих случаях проще использовать средние значения для расчета звукового поглощения в различных типах помещений, а затем также оценочное значение эквивалентной площади поглощения помещения (см. рис. 2).

3) Эффективная площадь поглощения, основанная на оценке

Если не известны коэффициенты поглощения всех поверхностей и допустимо использовать усредненный коэффициент поглощения, то можно расчитать его по графику. График построен для помещений со стандартными пропорциями, т.е. 1:1 или 5:2.

Зная объем и тип помещения, с помощью графика и таблицы 1 можно определить его среднее эквивалентное поглощение.


Рис. 2. Оценка эквивалентной площади поглощения

Средние значения коэффициентов поглощения для различных типов помещений

Радиостудии, музыкальные салоны 0,30 — 0,45
Телевизионные студии, читальные залы, склады 0,15-0,25
Жилые помещения, офисы, конференц-залы, театр ; 0,10 — 0,15
Школьные комнаты, детские сады, небольшие церкви 0,05 — 0,10
Заводы, плавательные бассейны, большие церкви 0,03 — 0,05

Расчет уровня звукового давления

С помощью вышеописанных коэффициентов теперь возможно рассчитать уровень звукового давления, если известен уровень звуковой мощности. Уровень звукового давления может быть рассчитан с помощью формулы, включающей все эти факторы, но это равенство можно также воспроизвести в форме графика.

Читайте также:  Как специально повысить артериальное давление

Расчет уровня звукового давления по графику начинаем с расстояния до источника звука (г) и, учитывая коэффициент направленности (Q), получаем разницу между уровнем звуковой мощности и уровнем звукового давления для эквивалентной площади поглощения заданного помещения (А). Это значение разности добавляем к уже известному уровню звуковой мощности и получаем уровень звукового давления (см. также стр.539).

Рис. 3. Примерная оценка уровня звукового давления

Прилегающее и реверберационное пространство

Прилегающим называется пространство, где уровень шума от источника доминирует над общим уровнем шума в помещении. В реверберационном пространстве будет доминировать отраженный звук. И невозможно определить оригинальный источник звука.

При прямом распространении звук ослабевает с увеличением расстояния, в то время как отраженный звук примерно одинаков во всех частях помещения.


Рис. 4. Прямой и отраженный звук.

Время ревербераци

Время реверберации — это время, за которое уровень звука, уменьшается на 60 дБ. Это подобно эффекту эха, который образуется в тихой комнате после выключения мощного источника звука. Если время реверберации рассчитано достаточно точно, то по этой же формуле можно рассчитать и эквивалентную площадь поглощения помещения.

Сложение

График построен на основании разницы в дБ двух складываемых источников звука. Величину дБ, которая должна быть прибавлена к большему уровню, определяем по шкале у.


Рис. 5. Логарифмическое сложение

Вычитание

График построен на основании разницы в дБ между общим уровнем звука и уже известным уровнем звука. Величину дБ, которая должна быть вычтена из общего уровня звука, получаем по шкале у.


Рис. 6. Логарифмическое вычитание

Имитация слуха

Человеческое ухо имеет разную степень чувствительности к звукам различной частоты. Это означает, что звуки с высокой и низкой частотой одинаковой мощности будут распознаваться, как два разных звуковых уровня. Говоря проще, мы слышим высокочастотный звук лучше, чем звук с низкой частотой.

А — фильтр

Чувствительность слуха также зависит от силы звука. Для компенсации неравномерного восприятия звука на октавные полосы частот накладываюся корректировки, так называемые фильтры. Для уровня звукового давления ниже 55 дБ используется А-фильтр. Для уровня между 55 и 85 дБ — В-фильтр, а для уровня свыше 85 дБ — С-фильтр.


Рис. 7. Выравнивание с А-, В- или С-фильтрами

А-фильтр наиболее часто применяется в вентиляции, накладывая корректировку на каждую октавную полосу частот (см. табл. 2). Поатому значения дБ, получаемые с корректировкой А-фильтра, обозначаются как дБ(А).

Помимо фильтров, существуют также другие способы компенсировать несовершенство восприятия уха. График с NR-кривыми (Noise Rating — рейтинг шума) показывает звуковое давление и частоту звука, которая воспринимается человеческим ухом одинаково. Например, 43 дБ при 4000 Гц так же опасны, как 65 дБ при 125 Гц.

Снижение шума

Снижение шума достигается двумя способами: поглощением или отражением звука.

Затухание поглощением

— Звукоизолированные воздуховоды.
— Глушители.
— Поглощение звука самой комнатой.

Затухание отражением

— Концевое отражение (когда звук отражается от конечного диффузора назад в воздуховод).
— Разветвления или повороты (отводы, утки, отступы).

Степень глушения шума может быть рассчитана с использованием таблиц и графиков, представленных в технической документации соответствующих поставщиков.

Источник

Общие данные о звуке и шуме

Введение

Тон, звук, шум представляют собой механические вибрации материальных частиц в эластичной среде. Когда тон и звук являются помехой тогда говорим о шуме. Обычная звуковая волна колеблется с небольшой амплитудой. В случае взрыва амплитуды очень большие. В жидкостях и газах звуковая волна — продольная, частицы колеблются в направлении распространения волны. В твердых телах звуковые волны могут быть и поперечными.

Обозначения акустических величин:

c м/сек — скорость звука

340 м/сек (при 20°С и 760 мм p.c.)

1484 м/сек

3940 м/сек

5000 м/сек

Скорость звука’
— в воздухе:
— в воде:
— в стекле:
— в железе:
— в бетоне: — 4000м/сек
— в дереве (дуб) — 3850 м/сек
l м — длина волны
f Гц — частота
T сек — продолжительность одного периода
дБ — логарифмическая единица уровня звука
LpA дБ — уровень звуковой мощности
LWA дБ (A) — уровень звуковой мощности по отношению к А фильтру
Lv дБ — общий уровень звуковой мощности вентилятора
z — число лопаток вентилятора
fon фон — единица уровня громкости
De дБ — демпфирование (ослабление) звукового давления
a — коэффициент абсорбции звука

Звуковое давление — переменное давление, которое при расширении звукового вала суммируется с атмосферным давлением. Звуковое давление очень мало по сравнению с атмосферным. Минимальное давление, регистрируемое человеческим ухом составляет всего 0,00002 Па (т.е. 2*10 -5 Н/м 2 ), а звуковое давление, вызывающее боль в ушах приблизительно 20 Па (т.е. 20 Н/м 2 ). Для упрощения измерений в практике чаще всего измеряют звуковое давление, т.к. его изменения ухо воспринимает как звук. Звуковое давление уменьшается обратно пропорционально с расстоянием от источника звука. Так например удвоение расстояния уменьшает уровень шума на 6 дБ, в соответствии со следующей формулой:

Пример ослабления шума вентилятора на определенном расстоянии в свободном пространстве:

При условии, что на расстоянии г1 от вентилятора, звуковое поле уже сформировалось, действительно выражение для приблизительного вычисления.

De = 20 log r2 + 14 дБ(А) = 20 log 50 + 14 = 48 дБ(А)

Уровень звукового давления на расстоянии r2 составляет:

(В расчете не приняты во внимание абсорбция и отражение шума от объектов)

Сила (интенсивность) звука I (Вт/м 2 ) — количество звуковой энергии, которая в единицу времена проходит через единичную площадь, перпендикулярную к направлению распространения звука.

Звуковая мощность Р (Вт) — произведение силы звука и поверхности, через которую звук проходит. Диапазон звуковых давлений, чувствуемых человеческим ухом огромен. Сравнивая диапазон от порога слышимости до границы боли, отношение минимального и максимального звуковых давлений 1:10 6 , а минимальной и максимальной звуковых мощностей даже 1:10 12 . Поэтому для показа этих отношений используют логарифмическую скалу, ввиду того, что ухо обладает логарифмической характеристикой. Из-за этого данные отношения можно показать значительно меньшими числами -децибелами, а умножение и деление сводится на суммирование и вычитание.

Уровни акустических величин Цель введения данных величин — получение различных параметров как например звуковое давление, сила звука, мощность звука и т.п. в сравнении с базовыми значениями. Логарифмические соотношения между значениями данных параметров являются безразмерными относительными величинами. Так например уровень звукового давления — безразмерная величина, показывающая во сколько раз наблюдаемый звуковой вал сильнее базового. Таким образом диапазон давлений от 1:1 000 000 сведен на уровень от О до 120 дБ (см. таблицу).

LpW= 10 log (p/p) (дБ), где p(10 -12 Вт) — сила звука на пороге слышимости

Выражение для уровня звукового давления на частоте 1000 Гц

LpA= 20 log (p/p) (дБ), где p(10 -5 Вт) — звуковое давление на пороге слышимости

Пример:

— Измерено звуковое давление р = 10 -1 Па.
— Каков уровень звукового давления LpA ?

Решение:

Отношение давлений: p/p= 10 -1 /(2*10 -5 )= 5000 = 5 * 1000

Из таблицы считываем:

— отношению звуковых давлений 5 соответствует 14 дБ
— отношению звуковых давлений 1000 соответствует 60 дБ

Уровень звукового давления LpA = 74 дБ

Соотношения силы звука и звуковых давлений в диапазоне от порога чувствительности до границы боли

Уровень громкости — фон — величина, численно равная уровню звукового давления чистого тона с частотой 1000 Гц, вызывающего такое же ощущение как и испытываемый звук.
При борьбе с шумом необходимо иметь в виду, что чувство неприятности не зависит от абсолютной величины уровня шума, а от перемены, которую какой-либо источник звука вызывает по отношению к уровню громкости окружающей среды. При этом увеличение уровня громкости на 10 дБ вызывает чувство неприятности.

Графики одинаковой громкости, как их чувствует ухо, в соответствии с ДИН 45630, лист 2.
Графики оценивания А, В, С.

Уровень звукового давления (дБ) и уровень громкости (фон) при частоте 1 000 Гц имеют одинаковые значения.

Критерии оценки шума

При оценке шума в настоящее время применяют два основных правила:

  1. Измерение уровня громкости или звукового давления LpA при помощи акустического измерителя с корректирующей характеристикой типа А/дБ(А)/, при этом разрешенный уровень LpA задан.
  2. Измерение уровня звукового давления по октавам и сравнение с NR (или NC) характеристикой, нормализированным по ИСО.

В качестве критерия для оценки шума в области вентиляции и кондиционирования в Европе приняты NR (noisie rating) характеристики. В акустические измерители встроены фильтры с А, В и С характеристиками, и тогда на измерителе (анализаторе шума) считывают уровни на средних частотах спектра. Если шум какого-либо источника обладает одинаковой интенсивностью во всех 8-ми октавах спектра, тогда шум каждой октавы меньше шума источника на 9 дБ, т.к. общая разница звукового давления

LpA=10 log*n + L1 (дБ)
n — число источников шума
L1 — интенсивность шума в каждой из 8-ми октав (или в каждом из 8-ми источников)

Когда отдельные уровни источника звукового давления, измеренные по октавам, повторяют одну из NR характеристик, определенный уровень звукового давления LpA такого источника расположен ВЫШЕ значения граничной характеристики на 7 до 10 дБ. При шуме, создаваемом вентилятором, разница составляет около 5 дБ. т.к. спектр данного шума во всех октавах не достигает NR характеристику.

NR характеристики одинаковой громкости (в соответствии с А характеристикой)

Коррекционные коэффициенты для характеристик оценки звука по ДИН 45633
Средняя частота октавы(Гц) Оценка
А B С
31,5 -39,4 -17,1 -3,0
63 -26,2 -9,3 -0,7
125 -16,1 -4,2 -0,2
250 -8,6 -1,3
500 -3,2 -0,3
1000 -0
2000 +1,2 -0,1 -0,2
4000 +1,0 -0,7 -0,8
8000 -1,1 -2,9 -3,0
12500 -4,3 -8,1 -6,0
Затененная область иллюстрирует рекомендуемые значения в соответствии с таблицей на стр. 6

Пример: результаты измерения шума по А-характеристике

Задано: LpA = 55 дБ
Критерий: NR 49

Решение: (обозначено на диаграмме NR характеристик)

Вместо верхней таблицы при акустических расчетах можно использовать и диаграмму с об­рат­но­про­пор­цио­наль­ны­ми ха­рак­те­рис­ти­ка­ми в со­от­ветст­вии с нижним рисунком.

Предписанные критерии уровня шума для различных помещений в соответствии с ДИН 4109 и VDI2058 (от 1973 года)

Типы помещений Уровень шума
(ДБ)
Среднее время эха
(с)
NR — характеристики
Квартиры
Спальные комнаты — ночью
Спальные комнаты- днем
30
35
0,5
0,5
20
25
Больницы
Больничная палата — ночью
Больничная палата — днем
Операционный зал
Больничная лаборатория
Коридоры, залы ожидания
30
35
40
40
40
1
3
2
2
20
25
35
30
30
Общественные помещения
Радиовещательная студия
Телевизионная студия
Концертный зал
Опера
Театр
Кинозал
Зал
Класс
Зал для семинаров
Школьный класс
15
25
25
25
30
35
35
35
40
40
1
1,5
2
1,5
1
1
1
1
1
1
5
15
15
15
20
25
25
25
30
30
Канцелярии
Зал совещаний
Канцелярия руководителя
Комната отдыха
Небольшая канцелярия
Большая канцелярия
35
35
40
40
45
1
0,5
0,5
0,5
0,5
25
25
30
30
35
Церковь
Музей
Зал с окошками обслуживания
Вычислительный центр
Лаборатория
35
40
45
45
50
3
1,5
1,5
1,5
2
25
30
35
35
40
Спортивный зал
Бассейн
45
50
1,5
2
35
40
Ресторан
Кухня
Магазин
40 — 55 *
45 — 60 *
45 — 60 *
1
1,5
1
30 — 45
35 — 50
35 — 50
* зависит от назначения
Максимальные уровни шумов по VDI2058

в чисто промышленном районе 70 дБ(А)
в преобладающе промышленном районе днем 65 дБ(А)
ночью 50 дБ(А)
в смешанном районе днем 60 дБ(А)
ночью 45 дБ(А)
в преобладающе жилом районе днем 55 дБ(А)
ночью 40 дБ(А)
в исключительно жилом районе днем 55 дБ(А)
ночью 30 дБ(А)
в санаториях днем 45 дБ(А)
ночью 35 дБ(А)
в чисто жилом районе днем 35 дБ(А)
ночью 25 дБ(А)

Абсорбционные глушители звука

Эскиз глушителей с одинаковыми акустическими характеристиками

Приблизительные значения глушения можно рассчитать по выражению:

De =3 a *(L/s) (дБ), где
a — коэффициент абсорбции половины кулисы
L — длина глушителя
s — расстояние между кулисами

Верхняя формула действительна при ограничении

l > 2 s или f l /2) звуковых волн особенно проявляется при d = l / 4, т.е. при f=c/ = c/4d.
Из этого видно, что для глушения нижних частот необходима большая толщина кулис. Ввиду прохождения звука по листовым стенкам глушителя, максимальное приглушение составляет 40 дБ. Если необходимо большее глушение, тогда общее глушение делят на 2 глушителя, а между собой их соединяют эластичным переходником. При скоростях воздуха, больших 20 м/сек, или при загрязненном воздухе, кулисы обкладывают перфорированным листом, что очень незначительно влияет на глушение шума. Если же из — за большой влажности или других гигиенических причин, под перфорированным листом установить ПХВ пленку — это значительно ухудшает эффект глушения.

Источник

Adblock
detector