Меню

Атмосферное давление не соответствует давлению наддува не присутствует

artbooket › Блог › Основы турбонаддува. Часть 3.

Эта и следующая часть будут несколько сложнее первых двух, в них мы рассмотрим составляющие компрессорной карты, как оценить «соотношение давлений» и массовый расход воздуха вашего двигателя, а так же как рисовать точки на компрессорной карте для правильно подбора турбокомпрессора.
И…положите рядом с собой калькулятор — он вам понадобится при изучении этой и следующей статьи 🙂

Для начала обозначим и разъясним некоторые термины, с которыми нам придется столкнуться в этой статье:

Понятие абсолютного и относительного давления.

Под абсолютным давлением мы будем понимать давление относительно полного вакуума. Соответственно оно может быть только больше или равным нулю. На Земле на уровне моря оно принято равным одной атмосфере или 1атм.

Под относительным давлением мы будем понимать давление относительно атмосферного. Соответственно оно может быть как положительным так и отрицательным, в зависимости от того больше или меньше оно чем атмосферное.

Давайте рассмотрим их на примере давления во впускном коллекторе двигателя. Все наверняка видели в своей жизни приборы показывающие наддув. Такие приборы показывают именно относительно давление. На двигателе, работающем на холостом ходу, они показывают разряжение -0.65.-0.75атм. На наддуве мы можем видеть значения 1.0…2.0 и выше атмосфер. Всё это значения относительного давления. Абсолютные значения будут всегда на 1.0 больше, поскольку мы должны добавить одну атмосферу атмосферного давления, относительно которой прибор и показывает свои значения.
Т.е. на ХХ абсолютное давление будет равно +0.25.+0.35, а на наддуве, соответственно 2.0.3.0.

Составляющие компрессорной карты

Компрессорная карта это график, описывающий конкретные характеристики компрессора в различных режимах его работы. Среди этих характеристик мы разберем: эффективность компрессора, диапазон массового расхода воздуха, возможности работы на разных давлениях наддува, а так же скорость вращения вала турбины.

Ниже приведена типичная компрессорная карта с названиями ее составляющих.

Рассмотрим их по порядку:

По вертикальной оси у нас расположен Pressure Ratio, или «соотношение давлений», величина, описываемая как отношение абсолютного давления на выходе из компрессора к абсолютному давлению на его входе:

Где:
PR — соотношение давлений
Pcr — абсолютное давление на выходе компрессора
Pin — абсолютное давление на входе компрессора

*Очень грубо говоря эта величина просто показывает во сколько раз компрессор сжал воздух.

Как рассчитать Pressure Ratio: К примеру мы хотим рассмотреть ситуацию работы компрессора при 0.7 атм наддува в коллекторе. Для начала вспомним что «наддув» это относительное давление, а мы везде оперируем только абсолютным. Поэтому сразу добавляем к нему 1.0 атмосферного давления и дальше имеем в виду что у нас 1.7атм абсолютного давления в коллекторе

. В нашем случае, при нормальном атмосферном давлении на входе в турбину, соотношение давлений будет таким:

PR = Pcr/Pin = 1.7/1.0 = 1.7

Но на самом деле все несколько сложнее. В виду наличия в системе воздушного фильтра давление на входе в компрессор, как правило, несколько меньше атмосферного. В зависимости от размера и качества фильтра оно может быть меньше на 0.02-0.10атм. Допустим у нас оно меньше атмосферного на 0.05атм.

Тогда наша формула приобретет следующий вид:

PR = 1.7/(1.0-0.05) = 1.7 / 0.95 = 1.79

Повторим еще раз — для вычисления Pressure Ratio нам надо знать наддув для которого мы его считаем и разряжение на впуске перед компрессором. После этого

PR = (1.0 + давление на выходе компрессора) / (1.0 — разряжение на впуске)

В случае спортивной машины без воздушного фильтра, мы можем принять наш делитель всегда равным единице и просто считать PR = 1 + ДавлениеНаВыходе.

Air Flow или расход воздуха

По горизонтальной оси у нас расположен «массовый расход воздуха».

Это величина, показывающая, массу воздуха, проходящую за единицу времени через компрессор и, соответственно, дальше через двигатель. Исторически это величина на компрессорных картах выражается в lb/min или по-русски в фунтах воздуха за минуту времени. Фунт это 0.45кг, а минута это 60 секунд 🙂

Поскольку, как мы уже проходили, мощность двигателя напрямую зависит от количества топливо-воздушной смеси которая проходит через него, массовый расход, это, одна из главных характеристик которую мы можем получить, изучая компрессорную карту. При прохождении через мотор 1 фунта воздуха в минуту, современные моторы вырабатывает в среднем 9-11 лошадиных сил мощности. Соответственно даже беглый взгляд на компрессорную карту может нам сказать, на какую потенциальную мощность мы можем рассчитывать с этой турбиной. На приведенном выше примере, область работы компрессора заканчивается примерно на 52 фунтах, соответственно эту турбину грубо можно сразу оценить на 500лс.

Граница Surge это крайняя левая линия компрессорной карты. Работа компрессора левее этой границы, т.е. за пределами обозначенной компрессорной картой, связанна с нестабильностью воздушного потока, всплесками и провалами наддува. Длительная работа компрессора в таком режиме приводит к преждевременному выходу его из строя в виду большой переменной нагрузки на подшипники и крыльчатку компрессора.

Турбина может попасть в режим Surge в одном из двух случаев.

Первый самый распространенный — при резком закрытии дросселя, когда массовый расход воздуха через мотор резко падает, но турбина все еще вращается достаточно быстро. Это мгновенно перебрасывает нас влево по компрессорной карте в зону Surge. Но быстрое срабатывание Blow Off клапана восстанавливает расход воздуха через турбины, выпуская избыток наддутого воздуха в атмосферу.

Второй случай — возникновение Surge на режиме полной нагрузки, обычно на низких оборотах, когда турбина только начинает выходить на наддув. Он значительно более опасен, поскольку может продолжаться относительно долго, особенно на высоких передачах. Как правило, это связанно со слишком большой скоростью вращения турбины и большом создаваемом давлении в компрессоре, при относительно малом общем расходе воздуха через мотор. Обычно наблюдается на гибридах с маленькой горячей частью, маленьким A/R горячей части и большой компрессорной частью.

Еще одним способом, помогающим снизить вероятность попадания компрессора в зону Surge является использование компрессорного хаузинга с так называемым «Ported Shroud». Фактически это обводные воздушные каналы, встроенные в компрессорный хаузинг:

Благодаря этим каналам удается сместить границу Surge левее по компрессорной карте, за счет того что часть воздуха может выйти из компрессора назад во впуск. Это позволяет при прочих равных использовать больший компрессор на меньшей турбинной части без возникновения эффекта Surge. Ниже приведено сравнение двух компрессорных карт: с обычным компрессорным хаузингом и со встроенными обводными каналами:

Видно, что есть довольно значительная область карты красного цвета, которая является рабочей для турбины с портированным компрессорным хаузингом, но при этом находится левее границы Surge карты синего цвета, соответствующей обычному хаузингу.

Читайте также:  Назначение датчика давления топлива в рампе

Как это выглядит в реальной жизни? Ниже приведено фото двух турбин 30й серии, первая 3071 без «Ported Shroud», вторая 3076 с заводским «Ported Shroud»

Так же бывает возможность доработки заводского компрессорного хаузинга под «Ported Shroud», если с завода он не был изготовлен. Например в случае GT3582R это выглядит так:

Посмотрим еще раз на нашу компрессорную карту и рассмотрим последние три составляющих:
«Предельная граница эффективности», «Зоны эффективности компрессора» и «Скорость вращения турбины»

Предельная граница эффективности компрессора

Как линия Surge ограничивает карту слева, так граница эффективности ограничивает ее справа. Garrett на своих картах указывает область работы компрессора до 60-58% эффективности. Все, что находится правее этой границы, будет иметь эффективность ниже 58% и использование компрессора в этой области теряет смысл. За этим пределом начинается неоправданно большой нагрев сжимаемого компрессором воздуха, а скорость вращения турбины выходит за допускаемые производителем значения.

Зоны эффективности компрессора

Мы видим концентрические замкнутые линии, расходящиеся из центральной области карты. Возле каждой такой линии подписано значение эффективности компрессора внутри области очерченной этой линией. Самая маленькая область в центральной части соответствует максимально возможной эффективности компрессора. По мере удаления от центра мы будем попадать в области все меньшей и меньшей эффективности пока не упремся либо в предел по Surge слева, либо в предел по производительности справа.

Скорость вращения турбины

Линии, обозначенные на карте как «скорость вращения турбины», показывают с какой скоростью будет вращаться вал турбины в этой области. Значения выражаются в оборотах вала за минуту времени. С ростом скорости вращения турбины у нас увеличивается давление и/или расход воздуха через компрессор. Как видно, эти линии начинают сходиться в области границы зоны эффективности и, как уже было сказано выше, за пределами этой области скорость вращения турбины быстро увеличивается за пределы допустимого.

На этом мы заканчиваем рассмотрение компрессорной карты и теперь, понимая что на ней изображено, в следующей главе мы перейдем к изучению процесса подбора турбины под конкретный мотор.

Источник

Атмосферное давление не соответствует давлению наддува не присутствует

Re: Проверка давления наддува турбины и его регулирование.

Сообщение Jackson » 20 май 2016, 00:05

К теме, нашел инфу на другом форуме: http://www.oktja.ru/forum/topic/116899- . di-d-4m41/
Продублирую (надеюсь это не запрещено и никого не расстроит)
Use the data list function named «Item No. 6» boost pressure sensor of the M.U.T.-III to check the supercharging pressure when the engine speed increases to approximately 3,000 r/min or more by driving at full acceleration in 2nd.
Standard value: 198.7 — 228.0 kPa
4.If the supercharging pressure deviates from the standard value, check the following items for possible cause.

Malfunction of the variable geometry actuator
Malfunction of the variable geometry solenoid valve
Malfunction of the variable nozzle
Malfunction of the boost pressure sensor
Leakage of supercharging pressure
Malfunction of the turbocharger
Inadequate vacuum pressure to the variable geometry solenoid valve
5.When the indicated supercharging is more than standard value, supercharging control may be faulty, therefore check the followings.

Malfunction of the variable geometry actuator
Malfunction of the variable geometry solenoid valve
Malfunction of the variable nozzle
Malfunction of the manifold absolute pressure sensor

Используйте функцию ввода данных с именем «элемент № 6» датчик давления наддува М. У. т.-III для проверки наддува давления, когда увеличивается число оборотов двигателя приблизительно до 3000 об/мин или более при движении на полной скорости на 2-й.
Стандартное значение: 198.7 — 228.0 кПа
4.Если давление наддува отклоняется от стандартного значения, проверьте следующие пункты для возможной причины.

Неисправность привода переменной геометрии
Неисправность изменяемой геометрией электромагнитный клапан
Неисправности с регулируемым соплом
Неисправность датчика давления наддува
Утечки давления наддува
Неисправность турбокомпрессора
Неадекватное давление вакуума переменной геометрии электромагнитный клапан
5.При указанных наддув больше, чем нормативное значение, контроль наддува может быть неисправен, поэтому проверьте следующее.

Неисправность привода переменной геометрии
Неисправность изменяемой геометрией электромагнитный клапан
Неисправности с регулируемым соплом
Неисправность датчика абсолютного давления в коллекторе

офф: с дуру купил сегодня вот это

Источник

theWanderer › Blog › Диагностика и «лечение» проблемы дизеля — «не едет» — Часть 1

Сохранил к себе, что бы не потерять.
Взято с passat-b5.ru
Автор оригинальной статьи Spaze.
Большое спасибо ladjak
===============================
Разговор пойдет о дизелях AHH, AHU (90 сил), AFN (110 сил) AJM/ATJ (116 сил), а также всех дизелей VAG, турбина которых управляется разрежением.
Итак, на данных дизелях имеется турбина с изменяемой геометрией, т.е. давление наддува регулируется блоком управления по показаниям датчика давления наддува. Само описание турбокомпрессора и принципов его работы будет вынесено в отдельную главу (см. Приложение 1 в конце статьи)
Датчик давления находится в пластиковой трубе, идущей перпендикулярно двигателю:

Турбина управляется разрежением, создаваемым вакуумным насосом. Разумеется, сам ЭБУ не может управлять вакуумом, он управляет т.н. клапаном N75, который находится возле турбины (см Приложение 2).

Итак, блок судит о давлении наддува в системе по показаниям датчика давления наддува. Логично, правда? В зависимости от условий работы двигателя и желания водителя (положения педали газа) блок управления вычисляет необходимое давление наддува и подает соотвествующий сигнал на клапан N75, который уже и обеспечивает необходимое давление.

Увидеть это можно, имея диагностический адаптер и Vag-COM, или официальный прибор VAG.
1. Подключаемся к машине, заводим двигатель.
2. выбираем «двигатель», заходим в «измерения»
3. Выбираем 11 группу.
1 значение — это обороты двигателя.
2 значение — это необходимое ЭБУ давление наддува
3 значение — это измеренное датчиком давления значение
4 значение — это % участия атмосферы в тракте разрежения, т.е. 100% соотвествует полностью перекрытому каналу вакуума.

Надо сказать, что в процессе работы клапан N75 крайне редко полностью перекрывает доступ атмосферы в тракт управления наддувом. Обычно составляющая атмосферы не менее 30%. Т.е. для корректной работы управления необходимо не более 70% от производимого вакуумным насосом разрежения.
При выключенном зажигании или отключенной фишке клапан полностью открыт в атмосферу, чтобы не стравливать разрежение, созданное вакуумным насосом (не забываем, что этот же вакуум используется для усилителя тормозов). Сопротивление катушки клапана — около 17 ом.

Если в процессе движения ЭБУ установит, что давление наддува больше, чем это необходимо, он подаст сигнал на клапан N75 для уменьшения давления. И наоборот. Если давление наддува будет слишком большим в течении определенного времени — от 5 до 10 секунд), а %% закрытия клапаном основного вакуума уже и так 100%, то блок перейдет в аварийный режим и начнет уменьшать подачу топлива в цилиндры, ограничивая максимальные обороты в 3000. Это предотвращает возможное повреждение двигателя и позволяет без особых проблем добраться до сервиса. В дальнейшем, дабы не заморачиваться «придушиванием» двигателя, ЭБУ просто оставляет N75 открытым в атмосферу, таким образом без участия турбины двигатель просто очень вяло раскручивается. Опять-таки до 3000, или выше. Если получится

Читайте также:  Головная боль тошнота боль в глазах низкое давление

Одновременно в память ЭБУ запишется ошибка о превышении давления наддува.

Блок будет продолжать работать в таком режиме до выключения зажигания, после чего все повторится вновь.

Итак, что же теперь делать, если машина «не едет»?

В основном машина не едет вследствие недоудва или передува. Еще машина может не ехать из-за массы дргуих причин, но их мы пока в обсуждение не выносим. Что такое недодув (передув)? Это значит, что несмотря на усилия ЭБУ, турбина не дает нужного давления. Кстати, максимальная величина давления у ATJ — 2300 мбар, у AFN — 2100 мбар. Далее я буду делать отметки, если указанная проблема относится к недодуву или передуву («Н» или «П»). Если не отмечено — значит может быть причиной как недодува, так и передува.
Замечу также, что передув лечится все-таки легче, чем недодув.

Решение проблемы «не едет» следующее:

— проверить систему на предмет утечек (опрессовка, отдельная статья). Можно взглянуть на интеркулер, и если он в масле — скорее всего дырка в нем. Протираются соты интеркулера снизу пластиковым диффузором, надо снять, почистить интеркулер и заклеить его герметиком. И убрать диффузор или же подрезать его на 1,5-2 см, чтоб не доставал до сот интеркулера.

— проверить функционирование геометрии. Для этого необходимо на холостом ходу найти турбину и отсоединить управляющий вакуумный шланг с привода пневмоклапана управления геометрией (т.н. грибок). Шток клапана должен резко и одним движением уйти вниз. Затем надо надеть шланг обратно и наблюдать. Шток должен плавно пойти вверх одним движением. Диапазон хода штока — около 12 мм (точный диапазон?). Если плавности хода вверх нету — поздравляю, у вас «закисла» геометрия. На самом деле геометрия не закисла, а изношена. Мельчайшие образования сажи и нагара в «горячей улитке» препятствуют нормальному движению лопаток, и они периодически застревают в одном из положений, заставляя турбину выдавать болшее или меньшее давление. Как правило, причина не в загрязнениии механизма, а в его износе! Разборка и чистка турбины в большинстве своем помогает на срок от недели до месяца, дальше все возвращается на круги своя (добавил метод чистки геометрии без снятия турбины, Приложение 4)

— проверить функционирование клапана N75. Для этого необходимо в 11 группе измерений ваг-кома нажать кнопку «к базовым установкам». Педаль газа не трогать. ЭБУ станет поочередно, раз в 10 секунд открывать и закрывать клапан. Шток управления геометрией при этом должен двигаться в указанном диапазоне (около 12 мм). Если вы проверили, что геометрия исправна, т.е. не заедает, а при тесте клапана она ходит не так — скорее всего неисправен клапан. Или просто попросить у друга с дизелем такой же клапан и проверить. Обычно неисправностей у клапана две — либо не перекрывает полностью канал вакуума, либо не перекрывает полностью канал сообщения с атмосферой (т.е. клапан «подсасывает»). Как следствие — либо недодув, либо передув.

— проверить правильность подсоединения вакуумных шлангов к N75 и турбине. В дальнейшем размещу схему, но уже сейчас известно, что самый внешний тонкий «сосок» на клапане — это подающий разрежение шланг, который идет к «тройнику», который в свою очередь идет на аккумулятор разрежения (сферический бачок около турбины) и еще куда-то. Второй «сосок», чуть большего диаметра идет непосредственно на управление геометрией, и третий, находящийся с другой стороны клапана — это сообщение с атмосферой.

Менее распространенные, но также возможные неисправности:

— (Н) Проверить катализатор. Он забивается нечасто, но когда забивается, препятствует нормальному движению выхлопных газов, как следтвие — двигатель «задыхается», и турбина не в состоянии продавить эту пробку. Как змея, которая ест свой хвост: выхлопные газы проходят с затруднениями (как следствие — мала скорость прохождения газов через горячую улитку), колесо турбины не раскручивается — мало воздуха — мало топлива подается в цилиндры — нет выхлопных газов. В дополнение еще скажу, что если у Вашей машины назревает проблема с подклинивающими лопатками (иногда случается, что бывает передув, но крайне редко), то совместите чистку геометрии с удалением катализатора — этим вы ускорите движение газов в выпускном тракте и уменьшите осаждение сажи на лопатках геометрии. Настоятельно рекомендую.

Пример лога VAG-COM на двигателе AHU c забитым катализатором (3 и 11 группы — смотрите на 3-4 и 8-9 столбцы — запрошенное и измеренное значение воздуха и давления во впуске) :
STAMP, /мин, __мг/R, __мг/R, ___%, __STAMP, _/мин, __мБар, ___мБар, ____%,
10.03, __2730, __850.0, __455.5, __4.8, ___9.67, __2688, __1795.2, __1162.8, __34.7
10.75, __2793, __850.0, __455.5, __4.8, __10.39, __2751, __1795.2, __1173.0, __34.7
11.47, __2856, __850.0, __445.6, __4.8, __11.11, __2814, __1795.2, __1173.0, __34.7
12.19, __2919, __850.0, __435.6, __4.8, __11.83, __2877, __1795.2, __1173.0, __34.7
12.91, __2961, __850.0, __435.6, __4.8, __12.55, __2940, __1795.2, __1173.0, __34.7
13.63, __3003, __850.0, __425.6, __4.8, __13.27, __2982, __1795.2, __1173.0, __34.7
14.35, __3045, __850.0, __425.6, __4.8, __13.99, __3024, __1795.2, __1173.0, __34.7

А так работает «живой» ATJ с удаленным катализатором (тут группы наоборот — 11, потом 3):

время /мин турба турба N75 время /мин возд. возд.
09.55, 1323, 1795.2, 1672.8, 23.5, 09.15, 1239, 850.0, 725.2,4.8, , , , ,
10.36, 1575, 2080.8, 2142.0, 46.6, 09.96, 1449, 850.0, 931.0,4.8, , , , ,
11.16, 1806, 2233.8, 2539.8, 63.8, 10.75, 1680, 850.0, 1176.0,4.8, , , , ,
11.96, 2079, 2295.0, 2560.2, 78.1, 11.56, 1953, 850.0, 1249.5,4.8, , , , ,
12.76, 2373, 2233.8, 2295.0, 69.3, 12.36, 2226, 850.0, 1239.7,4.8, , , , ,
13.55, 2625, 2193.0, 2019.6, 70.1, 13.15, 2541, 850.0, 886.9,4.8, , , , ,
14.35, 2877, 2152.2, 2091.0, 71.7, 13.95, 2751, 850.0, 935.9,4.8, , , , ,
15.16, 3108, 2121.6, 2142.0, 75.3, 14.76, 3003, 850.0, 945.7,4.8, , , , ,
15.95, 3339, 2101.2, 2162.4, 78.1, 15.55, 3234, 850.0, 945.7,4.8, , , , ,

Маленькие замечания по удалению катализатора (сугубо мое мнение):
1. Пламегаситель не нужен, если вас не раздражает наличие еле слышного цокота в выхлопной трубе (слышно только если очень близко наклониться к выхлопной трубе) — это слышны выпускные клапана, как они открываются и закрываются.
2. Выбить катализатор можно и в домашних условиях, для этого нужна эстакада или яма, чтоб между днищем машины и землей было не меньше метра-полутора.
3. Таким образом можно вытащить кат у следущих автомобилей:
— Passat B5 с двигателем AFN, AHH
— Passat B5 с двигателем ATJ/AJM без системы евро-4

Читайте также:  Какую таблетку выпить для повышения давления таблетки

Метод таков: снимаем корпус воздушного фильтра, отцепляем приемную трубу катализатора от турбины и саму соединительную трубу от приемной трубы глушителя (в районе кулисы МКПП). Откручиваем 1 или 2 пластины хз чего на днище, чтоб вся конструкция опустилась вниз. Начинаем акуратно вытягивать банку катализатора вверх, поворачивая ее вокруг своей оси, стремясь вытащить ее в районе центра впускного коллектора, в пространство воздушного фильтра. Вытаскивается с незначительным гемором, без насилия. Надо только понять, куда крутить.

В автомобилях Ауди А6 и Пассатах В5 с устройством охлаждения выхлопных газов (для норм Евро-IV) необходимо открутить это самое устройство (3 гайки) и задрать на патрубках вверх, после чего будет место для того, чтобы вытащить трубу.

Не уверен (сам не делал) насчет Пассатов В5.5, там немного переделано пространство воздушного фильтра, и с очень большой степенью вероятности придется опускать подрамник, чтобы достать банку катализатора.

После того, как вытащили трубу катализатора, болгаркой спиливаем закисшие и выгоревшие болты крепления катализатора и ломом выбиваем этот самый кат из банки. Самое трудное — сделать первую дырку, надо постараться. А дальше он сам высыпется. Далее вставляем новые болты (М8, 35 мм) и гайки (проще подобрать на барахолке от крпеления выпускного коллектора, они самоконтрящиеся). Собираем в обратной последовательности. На все- провсе около 3 часов с перекурами. О чем это я? Ах да, продолжаем

— (Н) недостаточное разрежение, создаваемое вакуумным насосом. проверяется с помощью манометра для измерения разрежения. Должно составлять от -0,6 до -1 атм

— (Н) выход из строя каскада управления клапаном N75 в ЭБУ (подсевшее напряжение).

— (П) Также имеет место быть следующая гипотеза (пока только гипотеза): Т.к. турбина на ATJ/AFN на ХХ находится в положении «максимум наддува», то при разгоне лопатки управления геометрией просто не могут возвратиться в меньшее положение из-за того, что поток газов препятствует этому. Мы пытались сделать это руками, отцепив «грибок» от привода, но нам это удалось только приложив БОЛЬШОЕ усилие. Т.е передув может возникать так: турбина в максимуме, идет разгон. Далее блок видит, что давление слишком большое. Он начинает ступенчато стравливать разрежение, пытаясь уменьшить давление наддува. Клапан окончательно снижает разрежение, но из-за потока газов возникает эффект «подушки», когда лопатки не возвращаются обратно, прижимаясь в верхнем положении потоком газов. Далее ЭБУ прописывает ошибку, и оставляет клапан N75 полностью открытым в атмосферу. Обороты двигателя падают (например при переключении), лопатки турбины возвращаются в минимальное положение и больше оттуда не возвращаются (N75 полностью открыт в атмосферу) до выключения зажигания. Лечение данного недуга может быть в регулировке значения максимального положения штока управления геометрией (см. Приложение 3).

— (Н) На двигателе с АКПП огромное значение на тяговитость машины оказывает ДМРВ. Искажение значения расходуемого воздуха вследствие снижения характеристик измеряющего кристалла на каком-либо диапазоне (не только максимальных значений, а еще и в среднем диапазоне) приводит к неверному переключению, точкам при переборе скоростей и т.п. Проверить в общих чертах можно, зайдя в 3 группу (EGR). третья и четвертая окошка показывает требуемые и измеренные значения количества воздуха. Замечу, что требуемые значения не выходят за 850 единиц, т.к. на высоких оборотах двигателя системе не требуется подмешивать выхлопные газы к свежему воздуху. Нормальное положение клапана EGR на оборотах свыше 1500 — закрытое!
Если турбина не будет качать, то воздуха будет идти мало, что будет зафиксировано ДМРВ. На выход из строя датчика указывает правильный характер работы геометрии турбины, но воздуха при этом все равно мало (мало — это значит меньше желаемого, смотрим в 3 группе). Максимальное значение по расходу у двигателя ATJ — 1100 единиц (см приведенные выше показания лога VAG-COM).

Данная проблема очень похожа на проблему с катализатором — точно так же не раскручивается турбина.
— проблема с отсутствием тяги — двигатель не тянет вообще. На ХХ работает нормально, раскручивается до 4000 легко. Но стоит только машине поехать в горку — глохнет, как будто не 90-130 лошадей там, а 5-6! Нет мощности, никак.

Причиной данной проблемы может являеться неисправная система EGR. Из-за большого количества масла и сажи образовавшееся «говидло» препятствует полному закрытию клапана EGR (не путать с N18 — он управляет самим клапаном EGR), и выхлопные газы очень сильно подмешиваются к свежему воздуху вместо полного прекращения подмешивания на оборотах свыше 1500 — машина просто задыхается и глохнет. Гореть-то в горшках нечему, кислорода нет.

— беспричинная потеря тяги «ни с того ни с сего», причем тяга то есть — то нет, независимот от того, как включал-выключал зажигание.

Данная проблема мной относится к экзотической, но все же иногда встречается. Как правило перед этой проблемой выскакивала надпись «Engine Workshop», и встречались проблемы со стоп-сигналами (перегорали лампочки например). Причиной этому — т.н. «лягушка» стоп-сигналов. Она является важной частью работы двигателя, т.к. ЭБУ отслеживает и регулирует работу двигателя по положению не только педали газа, но еще и положению педали тормоза и сцепления.

Проведите такой эксперимент — при разгоне засеките примерное время сброса оборотов двигателя с 2500 до ХХ, когда нажимаете сцепление (при переключении передач например, сбрасываем газ и надимаем сцепление). А теперь засеките этот же путь, просто одновременно отпустив газ и выдернув передачу без нажатия сцепления (т.е. сбросив нагрузку с валов КПП) — передача выдернется довольно легко при соответствующем навыке (см. «Переключение передач без нажатия сцепления»). Стрелка тахометра будет «падать» раза в 2 дольше — ЭБУ думает, что мы просто сбросили газ

Точно так же ЭБУ «думает», что у нас нажата педаль тормоза, и его логика не понимает, как можно давить одновременно педаль газа и тормоза. Поэтому блок не дает раскручиваться двигателю. Меняйте лягушку и будет вам счастье

Как показывает практика, проблемы у двигателя AHU все-таки возникают реже, чем у остальных дизелей этой серии вследствие более простой схемы управления давлением наддува. Еще раз перечислю эти причины:
1. Неисправный ДМРВ
2. Забитый катализатор
3. Неисправна система EGR
4. Неисправна система управления байпасом.
========
cut

Приложения в отдельной статье, ибо слишком длинный текст.

Источник

Adblock
detector