Определение атмосферного давления, приведенного к уровню моря.
Обычно минимальное атмосферное давление на участках трассы, приведенное к уровню моря, определяется по синоптической карте, на которой оно дано относительно уровня моря. Но если на аэродроме, расположенном в равнинной и холмистой местностях, нет метеостанции, то приведенное давление определяет экипаж (пилот) по барометрическому высотомеру. Для этого необходимо стрелки высотомера установить на отсчет, равный абсолютной высоте аэродрома, а затем по шкале давления отсчитать приведенное давление на уровне моря.
Приведенное давление можно также рассчитать. В этом случае по высотомеру определяют давление на аэродроме, а затем рассчитывают приведенное давление по упрощенной формуле
где Раэр — атмосферное давление на аэродроме; Hаэр — абсолютная высота аэродрома.
В формуле знак плюс соответствует положению аэродрома выше, а знак минус ниже уровня моря.
Для приведения давления аэродрома к уровню моря с большей точностью пользуются следующей формулой:
где α — коэффициент объемного расширения воздуха, равный 1 /273; to — температура воздуха на аэродроме.
Приведение давления к уровню моря на метеостанциях осуществляется по заранее рассчитанным таблицам.
Расчет безопасной высоты для района подхода.После входа самолета в район аэродрома посадки (за 5—10 мин до начала снижения) штурман обязан рассчитать рубеж начала снижения и безопасную высоту для района подхода.
Безопасная высота для района подхода рассчитывается в зависимости от условий полета по давлению 760 мм рт. ст. или по приведенному минимальному давлению.
Для района подхода установлены следующие минимальные истинные безопасные высоты:
1. Для полетов по ППП — Нбез.ист=400 м.
2. Для полетов по ПВП для самолетов со скоростями полета 300 км/ч и менее — Нбез.ист=100 м.
3. Для полетов по ПВП для самолетов со скоростями полета от 301 до 550 км/ч—Нбез.ист=200 м
Рельеф местности и искусственные препятствия в районе подхода учитываются в полосе по 10 км в обе стороны от оси маршрута при полетах по ППП и по 5 км при полетах по ПВП.
Пример,Нр= 540 м; местность холмистая; полет по ППП; Рприв мин = 750 ммрт. ст.; t = — 20°. Определить Н760без для района подхода.
Решение: 1. Определяем абсолютную безопасную высоту полета: На6с.без = Hбез. ист + Нр = 400 + 540 — 940 м.
2. Определяем температуру воздуха на полученной высоте и исправляем высоту на методическую температурную поправку по НЛ-10М:
3. Находим барометрическую поправку к высоте и определяем безопасную барометрическую высоту полета по давлению 760 мм рт. ст:
Расчет безопасной высоты для полета по схеме захода на посадку. Безопасная высота для полета по схеме захода рассчитывается подавлению на аэродроме посадки (рис. 8.3). Расчет производится по формуле
МБВ — это минимальная безопасная высота полета по схеме захода на посадку. Указывается на схеме захода для полетов по ППП.
На схеме захода на посадку превышения рельефа и препятствий даны относительно уровня аэродрома.
Для полетов в зоне взлета и посадки установлены следующие минимальные истинные безопасные высоты:
1. Для полетов по ППП для всех типов самолетов — Hбез. ист =300 м.
2. Для полетов по ПВП для самолетов со скоростью полета по кругу 300 км/ч и менее — Hбез. ист = 100 м.
3. Для полетов по ПВП для самолетов со скоростью полета по кругу более 300 км/ч — Hбез. ист =200 м.
Превышения рельефа местности и искусственных препятствий учитываются в полосе по 10 км в обе стороны от оси маршрута захода на
посадку при полетах по ППП и по 5 км при полетах по ПВП.
Рассчитанная безопасная высота должна соблюдаться до выхода из четвертого разворота.
Пример.ΔHp = 155м ; t= —5°; заход на посадку по приборам. Определить Hаэр.без
Решение. 1. Определяем минимальную безопасную высоту полета по схеме захода:
2. Определяем температуру воздуха на полученной высоте и исправляем высоту на методическую температурную поправку на НЛ-10М:
Источник
Приведение давления к уровню моря
Вычисление с помощью барометрической формулы, по фактически наблюдаемому на станции атмосферному давлению и по температуре воздуха, того атмосферного давления, которое было бы на станции, если бы она находилась на уровне моря, т. е. если бы к фактическому давлению было прибавлено еще давление столба воздуха, простирающегося от уровня станции до уровня моря. Так как этого дополнительного столба воздуха в Действительности (для станции на равнине) не существует, то для расчета условно принимают, что температура растет на 0,5° на каждые 100 м понижения. Давление на станциях, расположенных выше 800 м, к уровню моря не приводится.
Приведение давления к уровню моря производится на всех метеостанциях, посылающих синоптические телеграммы. Чтобы давление было сравнимо на станциях, расположенных на разных высотах, на синоптические карты наносится давление, приведённое к единой эталонной отметке — уровню моря. При приведении давления к уровню моря используют сокращенную формулу Лапласа: z2-z1=18400(1+λt)lg(p1/p2). То есть, зная давление и температуру на уровне z2 можно найти давление (p1) на уровне моря (z1=0).
Вычисление давления на высоте h по давлению на уровне моря Po и температуре воздуха T:
где Po — давление Па на уровне моря [Па]; M — молярная масса сухого воздуха 0,029 [кг/моль]; g — ускорение свободного падения 9,81 [м/с²]; R- универсальная газовая постоянная 8,31 [Дж/моль К]; T — абсолютная температура воздуха [К], T = t + 273, где t — температура в °C; h — высота [м].
На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт.ст. На больших высотах эта закономерность нарушается.
Зевота — это реакция человека на избыточное атмосферное давление. Когда мы зеваем — мы выравниваем внутреннее давление в ушах с атмосферным. Соответственно когда кто–то рядом зевнул и выровнял своё давление — давление на уши окружающих повышается, и они тоже начинают его выравнивать. И все зевают следом.
Источник
Атмосферное давление.
Атмосферное давление обуславливается весом воздуха. 1 м³ воздуха весит 1,033 кг. На каждый метр поверхности земли приходится давление воздуха силой 10033 кг. Под этим подразумевается столб воздуха высотой от уровня моря до верхних слоев атмосферы. Если сравнить его со столбом воды, то диаметр последнего имел бы высоту всего 10 метров. То есть, атмосферное давление создается собственной массой воздуха. Величина атмосферного давления на единицу площади соответствует массе воздушного столба, находящегося над нею. В результате увеличения воздуха в этом столбе происходит рост давления, а при уменьшении воздуха — падение. Нормальным атмосферным давлением считается давление воздуха при t 0°С на уровне моря на широте 45°. В этом случае атмосфера давит с силой 1,033 кг на каждый 1 см² площади земли. Масса этого воздуха уравновешивается ртутным столбиком высотой 760 мм. На этой взаимосвязи и измеряется атмосферное давление. Оно измеряется в миллиметрах ртутного столба или миллибарах(мб), а так же в гектопаскалях. 1мб = 0,75 мм рт.ст., 1 гПа = 1 мм.
Измерение атмосферного давления.
Атмосферное давление измеряется с помощью барометров. Они бывают двух типов.
1. Ртутный барометр представляет собой стеклянную трубку, которая запаяна сверху, а открытым концом погружена в металлическую чашу с ртутью. Рядом с трубкой крепится шкала, показывающая изменение давления. На ртуть действует давление воздуха, которое своим весом уравновешивает столбик ртути в стеклянной трубке. Высота ртутного столба меняется при изменении давления.
2. Металлический барометр или анероид представляет собой гофрированную металлическую коробку, которая герметично закрыта. Внутри этой коробки находится разреженный воздух. Изменение давления заставляет колебаться стенки коробки, вдавливаясь или выпячиваясь. Эти колебания системой рычагов заставляют стрелку перемещаться по шкале с делениями.
Самопишущие барометры или барографы предназначены для записи изменений атмосферного давления. Перо улавливает колебание стенок анероидной коробки и чертит линию на ленте барабана, который вращается вокруг своей оси.
Каким бывает атмосферное давление.
Атмосферное давление на земном шаре изменяется в широких пределах. Его минимальная величина — 641,3 мм рт.ст или 854 мб была зарегистрирована над Тихим океаном в урагане «Ненси», а максимальная — 815,85 мм рт.ст. или 1087 мб в Туруханске зимой.
Давление воздуха на земную поверхность изменяется с высотой. Среднее значение атмосферного давления над уровнем моря — 1013 мб или 760 мм рт.ст. Чем больше высота, тем меньше атмосферное давление, так как воздух становится все более разреженным. В нижнем слое тропосферы до высоты 10 м оно снижается на 1 мм рт.ст. на каждые 10 м или на 1 мб на каждые 8 метров. На высоте 5 км оно меньше в 2 раза, 15 км — в 8 раз, 20 км — в 18 раз.
В связи с перемещением воздуха, изменением температуры, сменой времени года атмосферное давление постоянно меняется. Дважды за сутки, утром и вечером, оно повышается и столько же раз понижается, после полуночи и после полудня. В течение года из-за холодного и уплотненного воздуха зимой атмосферное давление имеет максимальную величину, а летом — минимальную.
Атмосферное давление постоянно меняется и распределяется по поверхности земли зонально. Это происходит из-за неравномерного прогревания Солнцем земной поверхности. На изменение давления влияет перемещение воздуха. Там, где воздуха становится больше, давление высокое, а там, откуда воздух уходит — низкое. Воздух, прогревшись от поверхности, поднимается вверх и давление на поверхность понижается. На высоте воздух начинает охлаждаться, уплотняется и опускается на близлежащие холодные участки. Там возрастает атмосферное давление. Следовательно, изменение давления обуславливается перемещением воздуха в результате его нагревания и охлаждения от земной поверхности.
Атмосферное давление в экваториальной зоне постоянно понижено, а в тропических широтах — повышено. Это происходит из-за постоянно высоких температур воздуха на экваторе. Нагретый воздух поднимается и уходит в сторону тропиков. В Арктике и Антарктике поверхность земли всегда холодная, а атмосферное давление повышено. Его обуславливает воздух, который приходит из умеренных широт. В свою очередь в умеренных широтах из-за оттока воздуха формируется зона пониженного давления. Таким образом, на Земле существуют два пояса атмосферного давления — пониженный и повышенный. Пониженный на экваторе и в двух умеренных широтах. Повышенный на двух тропических и двух полярных. Они могут немного смещаться в зависимости от времени года вслед за Солнцем в сторону летнего полушария.
Полярные пояса высокого давления существуют весь год, однако, летом они сокращаются, а зимой, наоборот, расширяются. Круглый год области пониженного давления сохраняются близ Экватора и в южном полушарии в умеренных широтах. В северном полушарии все происходит по-другому. В умеренных широтах северного полушария давление над материками сильно повышается и поле низкого давления как бы «разрывается»: сохраняется оно только над океанами в виде замкнутых областей пониженного атмосферного давления — Исландского и Алеутского минимумов. Над материками, где заметно повысилось давление, образуются зимние максимумы: Азиатский (Сибирский) и Северо-Американский (Канадский). Летом поле пониженного давления в умеренных широтах северного полушария восстанавливается. При этом над Азией формируется обширная область пониженного давления. Это — Азиатский минимум.
В поясе повышенного атмосферного давления — тропиках — материки нагреваются сильнее океанов и давление над ними ниже. Из-за этого над океанами выделяют субтропические максимумы:
- Северо-Атлантический (Азорский);
- Южно-Атлантический;
- Южно-Тихоокеанский;
- Индийский.
Несмотря на крупномасштабные сезонные изменения своих показателей, пояса пониженного и повышенного атмосферного давления Земли — образования довольно устойчивые.
Источник