Меню

Чему равно давление газов во время свободного

Давление газа — формула. Формула давления газа в сосуде

Давление является одним из трех основных термодинамических макроскопических параметров любой газовой системы. В данной статье рассмотрим формулы давления газа в приближении идеального газа и в рамках молекулярно-кинетической теории.

Идеальные газы

Каждый школьник знает, что газ является одним из четырех (включая плазму) агрегатных состояний материи, в котором частицы не имеют определенных положений и движутся хаотичным образом во всех направлениях с одинаковой вероятностью. Исходя из такого строения, газы не сохраняют ни объем, ни форму при малейшем внешнем силовом воздействии на них.

В любом газе средняя кинетическая энергия его частиц (атомов, молекул) больше, чем энергия межмолекулярного взаимодействия между ними. Кроме того, расстояния между частицами намного превышают их собственные размеры. Если молекулярными взаимодействиями и размерами частиц можно пренебречь, тогда такой газ называется идеальным.

В идеальном газе существует лишь единственный вид взаимодействия — упругие столкновения. Поскольку размер частиц пренебрежимо мал в сравнении с расстояниями между ними, то вероятность столкновений частица-частица будет низкой. Поэтому в идеальной газовой системе существуют только столкновения частиц со стенками сосуда.

Все реальные газы с хорошей точностью можно считать идеальными, если температура в них выше комнатной, и давление не сильно превышает атмосферное.

Причина возникновения давления в газах

Прежде чем записать формулы расчета давления газа, необходимо разобраться, почему оно возникает в изучаемой системе.

Согласно физическому определению, давление – это величина, равная отношению силы, которая перпендикулярно воздействует на некоторую площадку, к площади этой площадки, то есть:

Выше мы отмечали, что существует только один единственный тип взаимодействия в идеальной газовой системе – это абсолютно упругие столкновения. В результате них частицы передают количество движения Δp стенкам сосуда в течение времени соударения Δt. Для этого случая применим второй закон Ньютона:

Именно сила F приводит к появлению давления на стенки сосуда. Сама величина F от столкновения одной частицы является незначительной, однако количество частиц огромно (≈ 10 23 ), поэтому они в совокупности создают существенный эффект, который проявляется в виде наличия давления в сосуде.

Формула давления газа идеального из молекулярно-кинетической теории

При объяснении концепции идеального газа выше были озвучены основные положения молекулярно-кинетической теории (МКТ). Эта теория основывается на статистической механике. Развита она была во второй половине XIX века такими учеными, как Джеймс Максвелл и Людвиг Больцман, хотя ее основы заложил еще Бернулли в первой половине XVIII века.

Согласно статистике Максвелла-Больцмана, все частицы системы движутся с различными скоростями. При этом существует малая доля частиц, скорость которых практически равна нулю, и такая же доля частиц, имеющих огромные скорости. Если вычислить среднюю квадратичную скорость, то она примет некоторую величину, которая в течение времени остается постоянной. Средняя квадратичная скорость частиц однозначно определяет температуру газа.

Применяя приближения МКТ (невзаимодействующие безразмерные и хаотично перемещающиеся частицы), можно получить следующую формулу давления газа в сосуде:

Здесь N – количество частиц в системе, V – объем, v – средняя квадратичная скорость, m – масса одной частицы. Если все указанные величины определены, то, подставив их в единицах СИ в данное равенство, можно рассчитать давление газа в сосуде.

Формула давления из уравнения состояния

В середине 30-х годов XIX века французский инженер Эмиль Клапейрон, обобщая накопленный до него экспериментальный опыт по изучению поведения газов во время разных изопроцессов, получил уравнение, которое в настоящее время называется универсальным уравнением состояния идеального газа. Соответствующая формула имеет вид:

Здесь n – количество вещества в молях, T – температура по абсолютной шкале (в кельвинах). Величина R называется универсальной газовой постоянной, которая была введена в это уравнение русским химиком Д. И. Менделеевым, поэтому записанное выражение также называют законом Клапейрона-Менделеева.

Из уравнения выше легко получить формулу давления газа:

Равенство говорит о том, что давление линейно возрастает с температурой при постоянном объеме и увеличивается по гиперболе с уменьшением объема при постоянной температуре. Эти зависимости отражены в законах Гей-Люссака и Бойля-Мариотта.

Если сравнить это выражение с записанной выше формулой, которая следует из положений МКТ, то можно установить связь между кинетической энергией одной частицы или всей системы и абсолютной температурой.

Давление в газовой смеси

Отвечая на вопрос о том, как найти давление газа и формулы, мы ничего не говорили о том, является ли газ чистым, или речь идет о газовой смеси. В случае формулы для P, которая следует из уравнения Клапейрона, нет никакой связи с химическим составом газа, в случае же выражения для P из МКТ эта связь присутствует (параметр m). Поэтому при использовании последней формулы для смеси газов становится непонятным, какую массу частиц выбирать.

Когда необходимо рассчитать давление смеси идеальных газов, следует поступать одним из двух способов:

  • Рассчитывать среднюю массу частиц m или, что предпочтительнее, среднее значение молярной массы M, исходя из атомных процентов каждого газа в смеси;
  • Воспользоваться законом Дальтона. Он гласит, что давление в системе равно сумме парциальных давлений всех ее компонентов.

Пример задачи

Известно, что средняя скорость молекул кислорода составляет 500 м/с. Необходимо определить давление в сосуде объемом 10 литров, в котором находится 2 моль молекул.

Ответ на задачу можно получить, если воспользоваться формулой для P из МКТ:

Здесь содержатся два неудобных для выполнения расчетов параметра – это m и N. Преобразуем формулу следующим образом:

Объем сосуда в кубических метрах равен 0,01 м 3 . Молярная масса молекулы кислорода M равна 0,032 кг/моль. Подставляя в формулу эти значения, а также величины скорости v и количества вещества n из условия задачи, приходим к ответу: P = 533333 Па, что соответствует давлению в 5,3 атмосферы.

Источник

Закон Бернулли для чайников и учёных

Предисловием можно считать «За что физики не любят математиков»: http://proza.ru/2015/11/16/160

«Наука должна быть весёлая, увлекательная и простая. Таковыми же должны быть и учёные» (П.Л. Капица). и преподаватели. А чтобы так оно и было, нужно срезать профессора математической лженауки на первой же лекции. Знаю, что говорю, и привожу очередной пример.

Курс лекций по гидродинамике и аэродинамике начинается с закона Бернулли. Первый вопрос профессору на засыпку: «Что измеряют или показывают три трубчатых манометра на картинке вверху — давление в потоках или давление потоков?».

Правильный ответ: неподвижные поверхностные манометры на картинке вверху показывают давление потоков, так как для измерения давления в потоках нужны такие манометры или датчики давления, которые находились бы внутри потоков и двигались вместе с ними. Давление внутри потоков, знаете ли, всегда статично, и иного тут не дано. Но таких мобильных манометров, которые могли бы быть неподвижными относительно потоков, нет в опытах к теме «Закон Бернулли». Однако вывод сделан такой, словно они есть, словно давление внутри потоков уже измерено.

С маленькой лжи, как правило, начинается ложь большая. «Ложь большая» — это теория. Правильных теорий не бывает, поэтому «Никаким количеством экспериментов нельзя доказать теорию, но достаточно одного эксперимента, чтобы её опровергнуть» (А.Э.). Вся научная гидродинамика опровергается опытами по измерению давления в потоках.

Профессор, ау-у. Вы нас слышите. В опытах к теме «Закон Бернулли» нет соответствующих выводам измерений. Вы врёте по причине того, что ни один математик не отличает «давление потока» от «давление в потоке». Доказательства. Картинки из учебников и математические формулы под ними.

Так как давление в потоках не измерено, профессору опыт на картинке вверху говорит одно, а нам — другое: «Давление потока на параллельную потоку поверхность всегда тем меньше давления в потоке, чем больше скорость потока; а давление потока на поперечную или наклонную поверхность всегда тем больше давления в потоке, чем больше скорость самого потока». И чем наш вывод хуже.

А тем-то он и хуже, что никакой лживой научности и сложности для понимания в нём нет. К тому же, давление потока на поперечную поверхность или «скоростной напор» измеряется с помощью Г-образной «трубки Пито», вставляемой в поток загнутым концом навстречу потоку. Отсюда: давление в самом потоке примерно равно среднему арифметическому от показаний «трубки Пито» и «трубки у Бернулли». Более того, в ньютоновской механике уменьшение силы давления на параллельную потоку поверхность с увеличением скорости потока или тела и одновременное увеличение давления потока или тела на поперечную поверхность можно объяснить простым векторным разложением силы давления потока или тела. Но мы и этой математической глупости делать не будем.

Читайте также:  Загорелось давление масла на холостых авео

Конечно, наши выводы профессору будут сильно не по нутру. Но если он ещё будет в состоянии что-то говорить и продолжит настаивать на том, что «С увеличением скорости потока давление внутри потока уменьшается», то зададим ему второй вопрос на засыпку: «Почему причина и следствие в формулировке закона Бернулли переставлены местами?».

Действительно, так сформулировать общий закон потоков мог только теоретик с математическим складом ума, ведь для физика и инженера давление всегда первично, а сам поток и его скорость вторичны. Инженер так никогда не скажет: мол, чем больше скорость потока, тем меньше давление в нём. Для него это утверждение является противоречием здравому смыслу, то есть парадоксом: дескать, чем меньше давление в трубе, тем выше фонтан. А как скажет инженер.

Инженер скажет: «Поток можно создать двумя противоположными способами — локальным (или местным) повышением давления и локальным понижением его. Любой поток всегда движется в сторону меньшего давления. Это главный закон потоков или аксиома потоков, поэтому давление в потоке всегда уменьшается. При этом чем значительнее перепад и падение давления мы имеем или создаём, тем больше будет и скорость потока. и падение давления в нём».

Можно короче: «Чем больше падение давления в потоке или на данном участке трубы, тем больше скорость самого потока». И это будет тривиальный закон потоков, у которого уже есть все четыре обязательных признака истины: простота, ясность, универсальность и «предсказательная сила». Опровергнуть этот закон сможет только тот, кто создаст поток жидкости или газа, движущийся из области пониженного давления в область повышенного давления, то есть против действия превосходящих сил давления и упругости. Шутка.

«Тривиальный» — значит, яснее и проще некуда; значит, это закон-аксиома. К примеру, очень значительный перепад давления мы имеем сразу за камерой сгорания ракеты (примерно 250 атмосфер), и только поэтому скорость частиц реактивной струи, как говорят, достигает 3-х км/с. Вопрос профессору: «Что толкает ракету — закон сохранения импульса или асимметричное давление непрерывного взрыва в камере сгорания?». Если скажет, что закон, перед вами математик. Стреляйтесь сразу, ибо ничто физическое и реально существующее вы ему объяснить не сможете (даже я не смогу), а сам он этого уже никогда не поймёт.

Если скоростной поток жидкости инженеры создают в длинной горизонтальной трубе постоянного сечения, то тут будет так: чем большее давление нагнетается в трубе, тем больше будет скорость потока в трубе при постепенном падении давления в потоке к концу трубы, то есть к расширителю потока. Всё проще простого: наибольшее давление в потоке будет в начале трубы, а наименьшее — в конце, при этом скорость несжимаемого потока будет одинаковой и там, и тут. Постепенное падение давления в потоке будет происходить по причине уменьшения массы прокачиваемых жидкостей или газов на различных участках протяжённой трубы по мере приближения к концу трубы. Любой пожарник скажет, что так оно и есть, ведь давление воды и в вертикальном потоке тоже убывает по мере приближения к концу рукава по причине уменьшения веса воды в столбе воды. А физик вспомнит ещё и про третий закон Ньютона — «Действие не может быть больше противодействия». «Действие» — это в данном случае сила нагнетаемого давления; а «противодействие» — это масса потока плюс атмосферное давление на противоположном конце трубы. Противодействие уменьшается к концу трубы. и давление в потоке — тоже.

Итак, давление в потоке жидкости на разных участках трубопровода всегда различное, а скорость потока всегда одна и та же; давление в жидкости может уменьшаться, а скорость потока при этом может сохраняться. Где тут закон Бернулли для давления в потоках. Законы Ньютона, да, мал-мало есть, а Бернулли нет и близко. Но для математиков закон есть закон, поэтому давление в скоростном потоке у них всегда низкое по всей длине трубопровода. Трубопровод разорвало. и никто не знает почему. А виноват Бернулли. Но «Кто ж его посадит, он же — па-мят-ник!».

Инженер-аэродинамист сформулирует свой закон потоков примерно так: «Давление потока на параллельную поверхность всегда тем меньше давления в самом потоке, чем больше скорость потока или поверхности (крыла); а давление потока на перпендикулярную или наклонную поверхность всегда тем больше давления в самом потоке, чем больше скорость потока или поверхности (атакующего крыла)». И это будет качественный закон взаимодействия потоков с поверхностями, так как в каждом конкретном случае величина давления потока на поверхность зависит не только от скорости потока, но и от физических свойств потока и поверхности, поэтому она не вычисляется, а только измеряется. Следовательно, математикам и в аэродинамике делать особо нечего.

Так что, два математических закона Бернулли мы отменили. Зато, теперь имеем два основных физических закона потоков — тривиальный и качественный. И всё в этих законах понятно, и всё работает. Профессор «падсталом». Но добьём его математическую лженауку.

Действие этих двух законов во многих опытах и явлениях складывается или накладывается, поэтому наблюдаемый результат нельзя объяснять действием только какого-то одного закона. Но объединённого закона Бернулли или третьего математического закона потоков никогда не было, поэтому как определить «личную долю» каждого закона в результате того или иного опыта к теме «Закон Бернулли» не знает ни один математик. но знает каждый инженер. Он просто измеряет с помощью манометров и динамометров давление в потоке и давление потока при различной скорости потока, а потом лишь сравнивает результаты измерений. и никаких теорий потоков для него не существует.

«Для физика должно существовать только то, что измерено» (Нильс Бор). а не то, что можно подумать, придумать, недодумать и сосчитать. Сосчитать то, чего нет, может каждый. и превратить теоретическую физику в то, чего не может быть, чего уже никто не понимает, — тоже. Математические законы Бернулли — это лишь частный случай того, чего не может быть. Впрочем, математик всегда начинает считать, не спев подумать. Сейчас мы в этом снова убедимся.

Если подуть между двумя бумажными листами, подвешенными параллельно друг другу, листы сблизятся и почти сомкнутся. Можно подуть, а можно, наоборот, прососать пылесосом воздух между листами — результат тот же.

Математик Леонард Эйлер назвал этот опыт своего друга Даниила Бернулли «Великим парадоксом», ведь в первом случае листы должны были раздвинуться расширяющимся сжатым потоком. Сам назвал — сам и объяснил. через постоянство суммы потенциальной и кинетической или полной энергии замкнутой системы. Объяснил опять же уменьшение давления в потоке с увеличением скорости потока, а не уменьшение давления потока, то есть объяснил совсем не то, что надо было объяснять. И объяснил опять же математикам, а не инженерам. Инженеры твёрдо знают: давление в потоке выдуваемого из лёгких воздуха не может быть меньше атмосферного давления; дуть струёй пониженного давления ещё никто не научился. А вот давление потока на параллельные листы может быть меньше атмосферного. Так мы о том и говорим.

Качественный закон потоков гласит: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока». Можно короче: «Давление потока на параллельную поверхность всегда тем меньше, чем больше хаос в движении частиц потока».

В этой формулировке уже появилась физическая, а не математическая или теоретическая причина уменьшения давления потока на поверхность — это хаос или беспорядок в движении пограничных частиц потока. Вот почему на результат действия первого или тривиального закона потоков всегда накладывается действие второго или качественного закона, если мы рассматриваем взаимодействие потоков со стенками трубы, например, или с подвешенными листами. Однако давление внутри потока по-прежнему не измерено, а хаос в пограничном слое потока увидеть нельзя… Нет, уже всё можно. Человек, знаете ли, видит мир не глазами и слышит его не ушами.

В гидродинамике давление всегда первично, а скорость потока вторична; в аэродинамике скорость крыла всегда первична, а давление неподвижной атмосферы на него всегда вторично. Плоское крыло самолёта или птицы не изменяет давление в неподвижной атмосфере, а изменяется с увеличением скорости и угла атаки лишь взаимодействие быстрого крыла с атмосферой. Но в наших рассуждениях крыло чаще всего неподвижно, а это атмосфера «набегает» на крыло, словно всё происходит в аэродинамической трубе или в статическом (стационарном) потоке. Просто так нам удобнее рассуждать и объяснять.

Читайте также:  Мультиварка перестала набирать давление

У инженеров всё, что летает, делает это по причине совсем небольшой положительной разницы или асимметрии атмосферного давления на крыло. Появление подъёмной силы как раз и обусловлено качественным законом потоков: «Давление атмосферного потока на верхнюю отрицательно наклонную поверхность быстрого крыла тем меньше давления в самой атмосфере, чем больше хаос и разрежение частиц воздуха над ней; а давление потока на нижнюю положительно наклонную поверхность крыла тем больше атмосферного давления, чем больше скорость крыла, его угол наклона или атаки и деформация или уплотнение упругого воздуха под быстрым крылом». Как диагональ делит прямоугольник на два равных треугольника, так и плоское атакующее крыло делит набегающий поток на две самостоятельные и равнозначные причины возникновения подъёмной силы.

Вспомним, атмосферное давление на уровне моря равно 1,0033 кг/см2. Это очень большая сила, которая давит на неподвижное плоское крыло совершенно одинаково и сверху, и снизу. Если атмосферное давление со стороны одной из поверхностей крыла убрать, то со стороны противоположной поверхности тут же возникнет сила равная 10000 кг/м2. Да, 10 тонн на каждый квадратный метр крыла! И что мы имеем: орёл весом 4 кг, имея площадь «несущих поверхностей» как раз 1м2, почти неподвижно парит в вышине при положительной разнице атмосферного давления на его крылья всего 0,04% от теоретически возможного 1 кг/см2; АН-2 («кукурузник») летает горизонтально на разности 0,4% атмосферного давления; а скоростному современному пассажирскому авиалайнеру для горизонтального полёта достаточно и 5% от 1 кг/см2.

Как физики это узнали? Они применили принцип пропорциональности Леонардо да Винчи и разделили вес орла или летательного аппарата на площадь его несущих поверхностей. Вот и всё. А у математиков всё, что летает, летать не может по причине крайне не достаточной (в 6 раз меньше веса самолёта или божьей твари) подъёмной силы, вычисленной ими по самым надёжным математическим законам ньютоновской механики. Можете посмотреть по запросу «Парадокс шмеля», как математики из NASA и британские учёные вычисляли подъёмную силу. Ужас! Знание математической физики сделало их ещё глупее, чем когда они родились. И вообще, математик, считающий себя физиком, — это нечто в квадрате. Считать, что подъёмная сила крыла есть результат сопротивления воздушной среды его движению, в наше время может только профессор математики, а не физики. Читайте по запросу «О математическом идеализме в физике» (это не только мои статьи).

Идеальный или самый эффективный аэродинамический профиль – это «беспрофиль», то есть плоское, как бритва, крыло. И это для передовых инженеров уже аксиома или «новая аэродинамика», а Природа это знала ещё со времён первых летающих насекомых и птеродактилей. Так вот, асимметричное атмосферное давление на совершенно плоское крыло возникает и при его нулевом угле наклона к вектору движения набегающего атмосферного потока, если верхняя поверхность крыла испещрена микроскопическими неровностями, а нижняя – максимально гладкая. В воде «эффект хаоса над крылом» проявляется ещё значительно сильнее.

Это утверждение доказано самой эволюцией живой природы и передовой практикой авиастроения. Смотрим на расправленное крыло любой птицы: сверху оно бархатистое и может играть всеми цветами радуги, что физику говорит о дисперсии света на мельчайших неровностях на поверхности, а снизу – всегда очень плотное, гладкое и со стальным отливом. Смотрим на современный пассажирский «Боинг»: сверху он словно матовый, а снизу – зеркально гладкий. И пусть та положительная разница в атмосферном давлении на крыло, которая возникает только по причине различного качества покрытия его аэродинамических поверхностей, будет и недостаточной для полёта, но именно она и позволит самолёту или птице лететь горизонтально с меньшим углом атаки, то есть с меньшим лобовым сопротивлением, экономя силы и топливо.

Инженеры «Боинга» говорят, что уже экономят на «эффекте хаоса над крылом» до 7-ми процентов топлива, а это огромные деньги. Смотрите фотографии «Боингов» и читайте по запросу «Аэродинамика Боинг». А наши дурни из Сколково одной краской покрывают весь Боинг. Смотрите по запросу «Красим Боинг». Кожа акулы тоже только кажется гладкой, а на ощупь она сравнима с наждачной бумагой. Шершавая кожа способствует образованию хаоса в пограничном слое воды, что ещё больше уменьшает её давление на быструю акулу. И таких примеров «миллион».

«Если ты не можешь объяснить что-либо просто — значит, ты сам этого не понимаешь» (Эйнштейн). или говоришь о том, чего нет. «Вашу теорию относительности не понимает никто в мире, но Вы всё-таки стали великим человеком» (Чаплин). Эйнштейн очень много сделал для любителей огромных и сверхмалых чисел, а также всевозможных формул, но он «наследил» ещё и в аэродинамике.

В рассуждениях Эйнштейна о подъёмной силе есть только верхняя горбатая поверхность крыла и есть закон Бернулли: мол, крыло делит набегающий поток на два потока, из которых верхний, огибающий горб, всегда несколько быстрее прямого нижнего, а раз быстрее, то и меньше давление в нём; дескать, вот вам и положительная или подъёмная разница атмосферного давления на крыло. Но при этом его ни разу не посетила простая мысль вот о чём: при увеличении скорости крыла разница в скорости верхнего и нижнего потока остаётся той же самой, то есть 1/6 — 1/9; закон Бернулли действует и сверху, и снизу крыла. и как итог: при увеличении скорости самолёта подъёмная сила по закону Бернулли увеличиваться не может, то есть самолёт на горизонтальных крыльях просто-напросто не взлетит. Однако небольшая подъёмная сила горизонтального горбатого крыла имеет место быть, но не по закону Бернулли, а по причине разрежения и завихрения воздуха за горбом, то есть по качественному закону потоков.

Как авторитетные авиаторы ни пытались хоть что-то объяснить знаменитому теоретику про угол атаки крыла и наклон всего самолёта к вектору движения, как о главной причине возникновения разницы атмосферного давления, он лишь снисходительно посмеивался над ними. Дундуковость учёного всегда начинается с непонимания сущей простоты и с желания выглядеть умным. Смотрите «Эйнштейн и подъёмная сила, или Зачем змею хвост». «Математика — единственный совершенный метод водить себя за нос» (Эйнштейн). и других — тоже. Вопрос профессору на засыпку: «Почему в рассуждениях теоретиков горбатого профиля закон Бернулли действует только над крылом?».

Про математика Николая Жуковского и про его «присоединённые вихри», как о причине возникновения подъёмной силы, толкающей крыло снизу вверх, даже упоминать не хочется. Самолёты Эйнштейна и Жуковского — «беременная утка» и «шестикрылый монстр доаэродинамического периода» — не полетели по причине большого паразитного лобового сопротивления очень горбатых крыльев. Но именно они, а не Природа являются основоположниками и «отцами» аэродинамики. А ведь ещё Галилей завещал нам искать подсказки для ответов на все вопросы у Природы и в лабораториях, а не в научных текстах. Смотрите по запросу «Посмеёмся, мой Кеплер, великой глупости людской». «Великая глупость людская» — это глупость учёных.

Повторяем только что доказанный вывод: «Давление потока на параллельную ему поверхность всегда тем меньше давления в самом потоке, чем больше скорость этого потока и чем больше хаос в движении частиц пограничного слоя потока». «Степень хаоса» не вычисляется по математическим формулам, а «личная доля» каждого из двух законов потоков в наблюдаемых эффектах уменьшения давления потоков на поверхности с увеличением их скорости в каждом конкретном случае зависит от качества потоков и поверхностей, поэтому при желании тоже только измеряется, но не вычисляется. Вот почему математикам уже делать больше нечего — ни в аэродинамике, ни в объяснениях взаимодействий потоков с поверхностями. Так что, не только «Математика убивает креативность» (Андрей Фурсенко), но и креативность убивает математику. Причём математика убивает креативность всегда, а креативность убивает математику ещё недостаточно часто. «Занимаясь расчётами, ты попадаешь впросак, прежде чем успеваешь это осознать» (Эйнштейн).

Однако вторым законом потоков объясняются не только опыты к теме «Закон Бернулли», но ещё один раз доказывается нечто совсем другое, позволяющее увидеть истоки математического идеализма в физике и похоронить математическую физику, как науку о природе. «Законы математики, имеющие какое-либо отношение к реальному миру, ненадёжны; а надёжные математические законы не имеют отношения к реальному миру» (А. Эйнштейн). Сейчас мы эту словесную формулу математического идеализма просто-напросто докажем. Вернее, я докажу, а вы. согласитесь.

Читайте также:  Компрессор поршневой низкого давления dkab

«Невесомые вещества – это хаосы: если нет веса у беспорядочно мечущейся частицы, то нет его и у хаоса» (Левкипп и Демокрит). Древние греки считали воздух невесомым веществом, но даже не все плазмы – это невесомые хаосы: «неорганизованная» плазма – это всем хаосам хаос; а «самоорганизованная» плазма — совсем не хаос. Последняя образуется в замкнутых объёмах и состоит из равноудалённых колеблющихся частиц. Напряжением взаимного отталкивания равноудалённых частиц «организованная» плазма способна разорвать любые оболочки или направленным действием пробить любую броню, что и используется инженерами-взрывниками уже довольно давно. Но теоретики открыли явление «мгновенной самоорганизации высокотемпературной плазмы» только в 1987 году. Смотрите по запросу «Самоорганизованная плазма».

Самый яркий пример «неорганизованной» плазмы – это, удалённая от поверхности, плазменная атмосфера Солнца или его корона. Но у хаосов нет не только ни веса, ни существенного давления, но они ещё и непрозрачны ни для звука, ни для электромагнитных колебаний. К примеру, «неорганизованная» плазма, окружающая гиперзвуковую ракету, не позволяет управлять ракетой с помощью радиосигналов.

«Все жидкости и газы на Земле имеют вес и находятся под давлением веса собственных и выше расположенных слоёв» (Архимед). Поэтому все прозрачные жидкости и газы состоят из примерно одинаковых, равноудалённых и условно неподвижных (колеблющихся или дрожащих) частиц, находящихся в состоянии взаимного отталкивания и относительного (или чуткого) равновесия и взаимно отталкивающихся в газах на расстояниях много больших, чем в жидкостях. Отсюда: давление в любой точке жидкости или газа равно напряжению взаимного отталкивания равноудалённых частиц в этой точке, и по силе оно равно весу всех частиц над этой точкой. Уберите атмосферное давление, и капля воды тут же исчезнет, разлетевшись на молекулы, а аквариум с водой словно взорвётся. И повинно в том будет как раз-таки «напряжение взаимного отталкивания равноудалённых частиц». Смотрите по запросу «Современный Архимед. Трактат «О плавающих телах» и «К физике антигравитонов». Там есть опыты, позволяющие буквально увидеть неподвижность колеблющихся частиц в жидкостях и в газах.

Способность атомов и молекул к движению взаимного отталкивания пропорциональна температуре. А температура – это «опосредованное мерило» интенсивности атомных и внутриатомных движений и величины гравитационных моментов (квантов, импульсов) атомов, передающихся от атома к атому путём индукции.

Гравитационные моменты у более возбуждённых атомов больше, а у «менее горячих» — меньше. Этими моментами атомы словно дёргают друг друга, понуждая сами себя к взаимному отталкиванию, к синхронности движений и к равновесию. Так осуществляется индукционный или индуктивный теплообмен в природе и в гравитационной физике. О квантовой природе тяготения и отталкивания, электромагнетизма и прочего всего смотрите по запросу «Гравитационная физика. Атом».

Или вы думаете, что теоретики знают об атоме больше инженеров. Отнюдь. «Нет ни малейших признаков того, что атомная энергия когда-нибудь станет доступна людям. Это значило бы, что человек научился расщеплять атом» (Альберт Эйнштейн). «Десять лет моей жизни было потрачено только на то, чтобы полностью избавиться от идей этого человека» (Роберт Оппенгеймер об Эйнштейне и его теориях). Роберт Оппенгеймер — это инженер-изобретатель, «папа атомной бомбы». Он же на вопрос президента Гарри Трумэна «Когда русские смогут сделать атомную бомбу?» ответил: «Никогда». Дескать, в учебниках русских нет и намёка на реальную физику атома. И был абсолютно прав: русские сделали американскую атомную бомбу. Но в наших учебниках ничто не изменилось, словно атомного взрыва и не было. Смотрите по запросу «Гравитационная физика. Атом».

Теперь, думаю, вам уже более понятно — почему с увеличением скорости потока его давление на параллельную поверхность всегда уменьшается. Да, потому что при движении жидкого или газообразного кристалла вдоль шершавой поверхности возникает невесомый беспорядок в движении частиц пограничного слоя этого кристалла. Однако всё, что человек понимает, он когда-то понял сам. Считаю, что окончательно разобраться с двумя математическими законами Бернулли и выбросить их из головы вам помогут эти вопросы.

Профессору на засыпку.

1). Какой закон Бернулли не знал сам Бернулли?

2). Леонард Эйлер в результатах опытов своего друга Даниила Бернулли увидел «Великий парадокс». В чем именно он его увидел?

3). Эйлер объяснил результаты опытов Бернулли постоянством суммы потенциальной и кинетической энергии (или полной энергии) замкнутой системы. С какого места в экспериментах Бернулли эта «замкнутая система» начинается?

4). В ньютоновской механике уменьшение давления потока на параллельную ему поверхность с увеличением скорости потока можно объяснить векторным разложением силы давления потока. Почему нельзя применять ньютоновскую механику и математику для вычисления силы взаимодействия потоков с поверхностями?

5). На картинке вверху воду по трубе переменного сечения прокачивают, откачивают или же она бежит самотёком?

6). Каких двух необходимых измерительных приборов нет на рисунке вверху?

7). Если беспрофиль – это идеальный аэродинамический профиль, то чем является научная аэродинамика горбатого профиля?

8). Если беспрофиль – это деталь в измерителе давления в потоках, то чем является сам прибор?

9). Что стало причиной «теплового взрыва» реактора на Чернобыльской АЭС — самоорганизация частиц перегретого пара или большая кинетическая энергия частиц пара в пограничном с поверхностями реактора слое?

10). Что толкает ракету — закон сохранения импульса или асимметричное давление непрерывного взрыва в камере сгорания?

P.S. «Учёные объясняют то, что уже есть; инженеры создают то, чего никогда не было. И всё понятно, и всё работает. Мы же соединяем теорию с практикой: ничто не работает. и никто не знает почему» (Эйнштейн). У теоретиков ничто не работает потому, что у них «самая успешная математическая теория 20-го века — это кинетическая теория теплоты и давления», не имеющая к физической реальности никакого отношения. Да и вся математическая или теоретическая физика — это то, чего не может быть. А то, что может быть, это — инженерная физика, то есть физика природных и искусственных технологий. И вообще, наука — это логичная совокупность всех явлений и всего известного опыта. «Логичная» — значит, простая, явная, последовательная, взаимосвязанная и взаимообусловленная.

Там, где нет науки, есть научность. Научность появляется именно там, где посредством математических действий и преобразований доказывается возможность невозможного, где одно непонятное объясняется посредством ещё более непонятного, где кому-то удаётся из очевидного сделать невероятное и где постулируется, то есть берётся за основу, то, что невозможно ни опровергнуть, ни доказать. Это словно умышленно рассчитано на то, что глупцам умным и научным кажется лишь то, чего они не понимают. «Конечно, ваша гипотеза безумна. Но достаточно ли она безумна. Если гипотеза недостаточно безумна, науке от неё не будет никакого толку» (Нильс Бор). а учёным — проку. Простые и разумные идеи нужны только инженерам. И только они знают, что сложных открытий не бывает, что простота ближе к Природе и к пониманию Природы. но истинная простота — это как раз то, что впервые даётся познанию людей труднее всего. Но простота — это ещё и то, что учёным труднее всего объяснить. Более того, простота объяснения того или иного явления или опыта — это для теоретика хуже воровства и большое свинство. Дошло уже то того, что сказать правду учёным может только хам. И только поэтому самым большим парадоксом является то, что этот мир всё же познаваемый (с).

Хотелось бы услышать возражения или замечания, но их почему-то нет. Видимо, с тем, что мы живём в эпоху математических лженаук, уже никто не спорит.

Воображеньем прозорливым
К догадкам верным нас несло…
Но сонм учёных кропотливых
Свернул наш поиск — на число.

И лязгом счёта оглушённый
Забыл наш ум — решенья ключ…
Стал слепнуть, в шоры цифр втеснённый.
А был так зряч и так могуч!

Уж цифре памятник построен,
Распята Истина на нём.
Поклонник счёта, жрец и воин
Простёрся ниц перед числом:

Не осознать бедняге в заблужденье,
Как много лжи за ширмой исчисленья!

Источник

Adblock
detector