Меню

Что такое давление насыщенных паров бензина и нефти

ХИМИЯ НЕФТИ

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Определение давления насыщенных паров

Нефть и нефтепродукты характеризуются определенным давлением насыщенных паров, или упругостью нефтяных паров. Давление насыщенных паров является нормируемым показателем для авиационных и автомобильных бензинов, косвенно характеризующим испаряемость топлива, его пусковые качества, склонность к образованию паровых пробок в системе питания двигателя.

Для жидкостей неоднородного состава, таких, как бензины, давление насыщенных паров при данной температуре является сложной функцией состава бензина и зависит от объема пространства, в котором находится паровая фаза. Поэтому для получения сравнимых результатов практические определения необходимо проводить при стандартной температуре и постоянном соотношении паровой и жидкой фаз. С учетом изложенного выше топлив называют давление паровой фазы топлива, находящейся в динамическом равновесии с жидкой фазой, измеренное при стандартной температуре и определенном соотношении объемов паровой и жидкой фаз. Температура, при которой давление насыщенных паров становится равным давлению в системе, называется температурой кипения вещества. Давление насыщенных паров резко увеличивается с повышением температуры. При одной и той же температуре большим давлением насыщенных паров характеризуются более легкие нефтепродукты.

В настоящее время существует несколько способов определения ДНП веществ, которые можно разделить на следующие группы:

  1. Статический метод.
  2. Динамический метод.
  3. Метод насыщения движущегося газа.
  4. Метод изучения изотерм.
  5. Метод эффузии Кнудсена.
  6. Хроматографический метод.

Статический метод

На основе прямого статического метода создан ряд эксперименальных установок для исследования ДНП нефтепродуктов.

В нефтепереработке вследствие своей простоты широкое применение получил стандартный метод с использованием бомбы Рейда (ГОСТ 1756-2000). Бомба состоит из двух камер: топливной 1 и воздушной 2 с соотношением объемов соответственно 1:4, соединенных с помощью резьбы. Давление, создаваемое парами испытуемого топлива, фиксируется манометром 3, прикрепленным к верхней части воздушной камеры. Испытание проводят при температуре 38,8°С и давлении 0,1 МПа, обеспечиваемой специальной термостатированной баней.

Давление насыщенных паров испытуемой жидкости определяют по формуле:

Определение давления паров в бомбе Рейда дает приближенные результаты, служащие только для сравнительной оценки качества моторных топлив.

К достоинствам прибора относится простота конструкции и экспериментирования, к недостаткам — постоянное соотношение жидкой и паровой фаз и грубость метода (погрешность определения ДНП бензинов достигает 15-20%).

Расхождения между дайными, полученными с помощью бомбы Рейда и методом НАТИ, составляют 10-20 %.

Динамический метод

Метод насыщения движущегося газа

Метод изучения изотерм

Метод изучения изотерм даёт наиболее точные, по сравнению с другими способами, результаты, особенно при высоких температурах. Этот способ заключается в исследовании зависимости между давлением и объёмом насыщенного пара при постоянной температуре. В точке насыщения изотерма должна иметь излом, превращаясь в прямую. Считается, что этот метод пригоден для измерения ДНП чистых веществ и непригоден для многокомпонентных, у которых температура кипения — величина неопределённая. Поэтому он не получил распространения при измерении ДНП нефтепродуктов.

Метод эффузии Кнудсена

Метод эффузии Кнудсена применим в основном для измерения очень низких давлений (до 100 Па). Этот метод даёт возможность находить скорость эффузии пара по количеству конденсата при условии полной конденсации эффундирующего вещества. Установки, основанные на этом методе, имеют следующие недостатки: они являются установками однократного измерения и требуют разгерметизации после каждого измерения, что при наличии легкоокисляющихся и нестойких веществ нередко приводит к химическому превращению исследуемого вещества и искажению результатов измерений. Создана экспериментальная установка, лишенная указанных недостатков, но сложность конструкции позволяет применить её только в специально оснащенных лабораториях. Этот метод применяется в основном для измерения ДНП твёрдых веществ.

Читайте также:  Гипотоник поднять давление в домашних условиях

Метод эффузии Кнудсена

Однако, при анализе таких сложных смесей углеводородов, как нефтепродукты, возникают трудности не только при разделении углеводородов, относящихся к различным классам, но и при идентификации отдельных компонентов этих смесей.

Пересчет давления насыщенных паров

В технологических расчетах часто приходится производить пересчет температур с одного давления на другое или давления при изменении температуры. Для этого имеется множество формул. Наибольшее применение получила формула Ашворта:

Уточненная В. П. Антонченковым формула Ашворта имеет вид:

Для пересчета температуры и давления удобно также пользоваться графическими методами.

Наиболее распространенным графиком является график Кокса, который построен следующим образом. Ось абсцисс представляет собой логарифмическую шкалу, на которой отложены величины логарифма давления (lgP), однако для удобства пользования на шкалу нанесены соответствующие им значения Р. На оси ординат отложены значения температуры. Под углом 30° к оси абсцисс проведена прямая, обозначенная индексом «Н2», которая характеризует зависимость давления насыщенных паров воды от температуры. При построении графика из ряда точек на оси абсцисс восстанавливают перпендикуляры до пересечения с прямой Н2 и полученные точки переносят на ось ординат. На оси ординат получается шкала, построенная по температурам кипения воды, соответствующим различным давлениям ее насыщенных паров. Затем для нескольких хорошо изученных углеводородов берут ряд точек с заранее известными температурами кипения и соответствующими им значениями давления насыщенных паров.

Оказалось, что для алканов нормального строения графики, построенные по этим координатам, представляют собой прямые линии, которые все сходятся в одной точке (полюсе). В дальнейшем достаточно взять любую точку с координатами температура — давление насыщенных паров углеводорода и соединить с полюсом, чтобы получить зависимость давления насыщенных паров от температуры для этого углеводорода.

Несмотря на то что график построен для индивидуальных алканов нормального строения, им широко пользуются в технологических расчетах применительно к узким нефтяным фракциям, откладывая на оси ординат среднюю температуру кипения этой фракции.

Кроме графика Кокса для пересчета давления насыщенных паров углеводородов и их смесей в зависимости от температуры используется также график Максвелла.

Для пересчета температур кипения нефтепродуктов с глубокого вакуума на атмосферное давление используется номограмма UOP, по которой, соединив две известные величины на соответствующих шкалах графика прямой линией, получают на пересечении с третьей шкалой искомую величину Р или t. Номограммой UOP в основном пользуются в лабораторной практике.

Давление насыщенных паров смесей и растворов в отличие от индивидуальных углеводородов зависит не только от температуры, но и от состава жидкой и паровой фаз. Для растворов и смесей, подчиняющихся законам Рауля и Дальтона, общее давление насыщенных паров смеси может быть вычислено по формулам:

В области высоких давлений, как известно, реальные газы не подчиняются законам Рауля и Дальтона. В таких случаях найденное расчетными или графическими методами давление насыщенных паров уточняется с помощью критических параметров, фактора сжимаемости и фугитивности.

Источник

Давление насыщенного пара бензина

Если бы вас попросили закупорить посуду парами бензина, вы могли бы это принять за шутку. Но оказывается, бензиновые пары могут, подобно пробке, закупорить трубопровод.

Паровые пробки — это пары бензина, образовавшиеся в системе питания двигателя. Наиболее опасно образование паровых пробок в трубопроводах, подводящих бензин к насосу, и в нагнетающих полостях насоса. Паровые пробки разрывают струю бензина, в связи с чем подача горючего к двигателю уменьшается или полностью прекращается.

О склонности бензина к образованию паровых пробок надёжно можно судить не по температуре перегонки 10 % бензина, а по давлению его насыщенного пара* определяемому в лабораторной бомбе Рейда (рис. 7), которая состоит из двух камер, соединённых трубкой. Верхняя камера, которая по объёму в 4 раза больше нижней, снабжена манометром для измерения давления. Нижнюю камеру заполняют бензином (в верхней находится воздух), затем бомбу помещают в нагретую водяную баню. По манометру замеряют давление пара бензина в бомбе в мм рт. ст. или в барах**. Давление паров сильно изменяется в зависимости от температуры, поэтому опыт ведут при стандартной температуре 38 °С.

Читайте также:  Препараты для снижения верхнего давления без побочных эффектов

По давлению насыщенного пара судят:

• о наличии легкоиспаряющихся фракций в бензине, способных образовывать паровые пробки: чем выше давление насыщенного пара бензина, тем больше в нём легкокипящих фракций и, следовательно, тем больше опасность образования паровых пробок при работе двигателя на таком бензине;

• о пусковых свойствах бензина: чем выше давление пара, тем лучше пусковые свойства бензина, тем быстрее может быть осуществлён пуск и прогрев двигателя;

• о возможных потерях бензина от испарения при хранении: чем выше давление пара бензина, тем больше потери бензина от испарения при хранении.

Рис. 7.Лабораторная бомба для определения давления

на­сыщенных паров бензина

Давление насыщенных паров – это давление пара, находящегося в равновесии с жидкостью при определённых соотношениях жидкой и паровой фаз и данной температуре; оно зависит от температуры и давления жидкости. Давление насыщенных паров бензина, кПа, не более:

Давление насыщенных паров влияет не только на пусковые свойства бензина при низкой температуре окружающей среды, но и на работу двигателя в случае нагрева бензина в системе питания. Во время работы двигателя в условиях жаркого климата температура бензина в системе питания в среднем на 20-30 °С выше температуры окружающего воздуха. При чрезмерном повышении температуры из бензина выделяются пары углеводородов, кипящих при низкой температуре. Эти пары с воздухом, который в небольших концентрациях находится в бензине, образуют паровоздушные пузырьки. В результате горючая смесь, поступающая в цилиндры двигателя, будет содержать меньшую массовую долю бензина (обеднённая смесь) и может выйти за концентрационные пределы распространения пламени, а следовательно, привести к остановке двигателя. В зависимости от климатических условий эксплуатации двигателя используют бензины с различным фракционным составом и давлением насыщенных паров, обеспечивающие надёжный пуск и предотвращающие остановку двигателя из-за образования паровоздушных пузырьков в системе питания.

Таким образом, с одной стороны, высокое давление насыщенного пара бензина вредно, так как ведёт к образованию паровых пробок и повышенным потерям при хранении, а с другой — полезно, поскольку от него зависят лёгкость пуска и быстрый прогрев двигателя. Примирить между собой столь противоречивые свойства невозможно. Нельзя создать бензин, который не образовывал бы паровых пробок и в то же время обеспечивал лёгкий пуск двигателя и летом и зимой. Поэтому промышленность выпускает бензин с таким давлением насыщенного пара, чтобы склонность к образованию паровых пробок была минимальной летом, но чтобы он обладал необходимыми пусковыми свойствами зимой.

Для пуска двигателей зимой иногда применяют специальный пусковой бензин с высоким давлением насыщенного пара, на котором двигатель не может работать длительно из-за образования паровых пробок, но зато легко пускается при низкой температуре.

Вообще говоря, нет таких бензинов, которые не могли бы образовывать паровых пробок. Дело в том, что образование паровых пробок зависит не только от качества бензина, но и от условий эксплуатации и от конструкции системы питания двигателя.

Читайте также:  Как лечить повышенное нижнее давление в домашних условиях

Жаркая погода, как и заправка баков машин тёплым бензином, способствуют образованию паровых пробок.

Известно, что чем больше высота над уровнем моря, тем воздух разрежённее и тем ниже температура кипения жидкости. Например, если на уровне моря бензин начинает кипеть при температуре 60 °С, то на высоте 6000 м над уровнем моря он закипает при 40 °С. Отсюда понятно, что, чем выше над уровнем моря взбирается автомобиль, чем выше поднимается самолёт, тем вероятнее опасность образования паровых пробок в системе питания двигателя.

Состав горючей смеси

В карбюраторных двигателях бензин вначале испаряется, смешивается с воздухом и лишь затем поджигается электрической искрой.

При сжигании паров бензина, смешанных с воздухом, большое значение имеет состав горючей смеси.

Состав горючей смеси в двигателе выражают в виде коэффициента избытка воздуха.

Коэффициент избытка воздуха (α) – это отношение количества воздуха в килограммах, расходуемого в двигателе на сгорание 1 кг топлива, к количеству воздуха в килограммах, теоретически необходимому для полного сгорания 1 кг топлива.

Поясним па примере. Теоретически для полного сгорания I кг бензина необходимо 14,9 кг воздуха. Если при работе двигателя на 1 кг бензина расходуется воздуха ровно столько, сколько требуется теоретически, то α равняется 1 – такая горючая смесь называется нормальной.

Если же воздуха расходуется больше, чем требуется теоретически для сгорания 1 кг бензина, например 17,9 кг, то α будет равна 1,2.

Горючие смеси с α > 1 называются бедными, а с α 2017-02-24 ; просмотров: 6086 | Нарушение авторских прав | Изречения для студентов

Источник

Давление Насыщенных Паров

Давление насыщенных паров (ДНП) — давление паров вещества в воздухе, которое устанавливается при достижении динамического равновесия между жидкой и газовой фазой при определенной температуре.

Давление насыщенных паров является одной из главных характеристик, обуславливающих испаряемость, а следовательно, и пусковые свойства топлива. Различают два вида испарения:

  • статическое (относительное перемещение топлива и воздуха на поверхности их соприкосновения отсутствует), имеет место при хранении топлива
  • динамическое (происходит активное перемешивание или «обдув»), имеет место в двигателях внутреннего сгорания

Значение давления насыщенных паров позволяет оценивать следующие параметры топлив:

  • нижний предел ДНП характеризует наличие пусковых фракций (нормируется для авиационных бензинов)
  • верхний предел ДНП характеризует стабильность топлива в плане возможности возникновения газовых пробок
  • потери при испарении

Механизм процесса

При испарении молекулы вылетают с поверхности топлива в окружающее пространство, при этом часть вылетевших молекул могут снова поглотиться жидкостью. Степень испарения определяется отношением количеств вылетающих и поглощаемых обратно молекул.

Если пространство над жидкостью не ограничено, имеет место свободное испарение. В замкнутом объеме в начальный момент скорость испарения равна скорости свободного испарения, но по мере насыщения воздуха молекулами топлива увеличивается число молекул, возвращающихся обратно в жидкую фазу, и процесс испарения замедляется.

При определенной концентрации молекул топлива в воздухе число вылетающих из жидкости и возвращающихся в нее молекул уравнивается, наступает состояние динамического равновесия.

Максимальная концентрация паров топлива в воздухе, при которой устанавливается состояние динамического равновесия, характеризует собой давление насыщенных паров данного топлива. Чем выше значение данного параметра, тем большее количество его испаряется, прежде чем концентрация молекул в паровой фазе достигнет состояния динамического равновесия.

Стандарты определения давления насыщенных паров

  • ГОСТ 1756-2000
  • ГОСТ 28781-90
  • ГОСТ 31874-2012
  • ГОСТ Р ЕН 13016-1-2008
  • ГОСТ EN 13016-1-2013
  • ГОСТ Р 52340-2005
  • ASTM D323-15
  • ASTM D1267-02
  • ASTM D5191-13
  • ASTM D6378-10
  • ASTM D6897-09

Источник

Adblock
detector