Меню

Что такое температура насыщения пара при давлении

Параметры пара

Свойства пара определяются его параметрами, то есть величинами, характеризующими состояние пара (давление, температура, степень сухости, энтальпия, теплосодержание и т. д.). Тепловая энергия подводится к паровой турбине при помощи водяного пара, являющегося носителем тепловой энергии (теплоносителем).

Насыщенный пар

Если нагревать воду в открытом сосуде, то температура ее будет постепенно повышаться, пока не достигнет примерно 100 0 С; после этого дальнейшее повышение температуры прекращается и начинается кипение воды, то есть бурный переход ее в парообразное состояние. Температура воды во время кипения остается одной и той же, так же как температура получающегося над водой пара; она равна точно 100 0 С при нормальном атмосферном давлении, равном давлению ртутного столба 760 мм высотой. Искусственно изменяя давление, можно изменять температуру кипения в очень широких пределах; при увеличении давления температура кипения повышается, при уменьшении давления – понижается.

Так, при давлении 0,02 ата (0,02 от атмосферного давления) вода кипит при 17,2 0 С, а при давлении 10 ата при 179 0 С.

Температура пара над водой, из которой он получается (рис. 1), всегда равна температуре этой воды. Получающийся над водой пар называется насыщенный пар.

Определенной температуре насыщенного пара всегда соответствует определенное давление, и наоборот, определенному давлению всегда соответствует строго определенная температура.

В (таблице 1) приводится зависимость между температурой и давлением насыщенного пара.

Измерив термометром температуру насыщенного пара, можно по этой таблице определить его давление или, измерив давление, определить температуру.

При образовании пара в паровое пространство котла всегда попадают частицы воды, увлекаемые выделяющимся паром; особенно сильное увлажнение пара происходит в современных мощных котлах при работе их с большой нагрузкой. Кроме того, насыщенный пар обладает тем свойством, что при самом незначительном отнятии теплоты часть пара обращается в воду (конденсируется); вода в виде мельчайших капелек удерживается в паре. Таким образом, практически мы всегда имеем смесь сухого пара и воды (конденсата); такой пар называется влажный насыщенный пар. Так же как и у сухого насыщенного пара, температура влажного пара всегда соответствует его давлению.

Состав влажного пара принято выражать в весовых частях пара и воды. Вес сухого пара в 1 кг влажного пара называется или и обозначается буковой «х». Значение «х» обычно дают в сотых долях. Таким образом, если говорят, что у пара «х»=0,95, то это значит, что во влажном паре содержится по весу 95% сухого пара и 5% воды. При «х»=1 насыщенный пар носит название сухого насыщенного пара.

Один килограмм воды при своем испарении дает один килограмм пара; объем получающегося пара зависит от его давления, а следовательно, и от температуры. В противоположность воде, которая по сравнению с газами почти несжимаема, пар может сжиматься и расширяться в очень широких пределах.

Удельный объем, то есть объем 1 кг пара, при давлении 1 ата для сухого насыщенного пара равен 1,425 м 3 , то есть в 1725 раз больше объема 1 килограмма воды. При повышении давления удельный объем пара уменьшается, та как пар как упругое тело сжимается; так, при давлении 5 ата объем 1 кг сухого насыщенного пара уже равен только 0,3816 м 3 .

Энтальпия пара(теплосодержание) – практически определяется как количество тепла, которое нужно для поучения 1 кг пара данного состояния из 1 кг воды при 0 0 С, если нагрев происходит при постоянном давлении.

Понятно, что при одной и той же температуре энтальпии пара значительно больше, чем энтальпия воды. Для того чтобы нагреть 1 кг воды от 0 до 100 0 С, нужно затратить приблизительно 100 ккал тепла, так как теплоемкость воды равна приблизительно единице. Для того же, чтобы превратить эту воду в сухой насыщенный пар, нужно сообщить воде добавочно значительное количество теплоты, которое расходуется на преодоление внутренних сил сцепления между молекулами воды при переходе ее из жидкого состояния в парообразное и на совершение внешней работы расширения пара от начального объема v / (объем воды) до объема v // (объема пара).

Читайте также:  Что делать если атмосферное влияет на мое давление

Это добавочное количество теплоты называется теплота парообразования.

Следовательно, энтальпия сухого насыщенного пара будет определяться так:

i // =i / +r, ккал/кг,

где i // — полная теплота (энтальпия пара); i / — энтальпия воды при температуре кипения; r – теплота парообразования.

Например, при давлении 3 кг/см 3 теплосодержание 1 кг кипящей воды равно 133,4 ккал, а теплота парообразования равна 516,9 ккал/кг; отсюда энтальпия сухого насыщенного пара при давлении 3 кг/см 2 будет:

i // =133,4+516,9=650,3 ккал/кг (табл 2)

в сильной степени зависит от его степени сухости; с уменьшением степени сухости пара его энтальпия уменьшается.

Энтальпия влажного пара равна:

Эту формулу легко уяснить себе на следующем примере: допустим, что давление пара 5 кг/см 2 и степень сухости 0,9 иначе говоря, 1 кг этого пара содержит 0,1 кг воды и 0,9 кг сухого пара. По (табл 2) находим, что энтальпия воды при давлении 5 кг/см 2 равна округленно 152 ккал/кг, а энтальпия сухого пара 656 ккал/кг; так как влажный пар состоит из смеси сухого пара и воды, то энтальпия влажного пара в данном случае будет равна:

Следовательно, энтальпия влажного пара будет в этом случае примерно на 50 ккал/кг меньше, чем сухого насыщенного пара того же давления.

Перегретый пар

Если насыщенный пар отвести от поверхности испарения воды в котле и продолжать нагревать его отдельно, то температура пара будет подниматься и объем его увеличиваться. Устройство, в котором пар подогревается (пароперегреватель), сообщается с паровым пространством котла (рис 2). Пар, температура которого выше температуры кипения воды при том же давлении, называется . Если давление пара равно 25 ата, а температура его 425 0 С, то он прегрет на 425 – 222,9 = 202,1 0 С, так как давлению 25 ата соответствует температура насыщенного пара, равная 222,9 0 С (табл 2)

Энтальпия перегретого пара

Следовательно, она превышает энтальпию сухого насыщенного пара того же давления на величину, выражающую собой количество теплоты, дополнительно сообщенное пару при перегреве; это количество теплоты равно:

а=ср(t2 – t1), ккал/кг,

где ср – средняя теплоемкость 1 кг пара при постоянном давлении. Ее величина зависит от давления и температуры пара; в (табл. 3) даны значения ср для некоторых температур и давлений;

t1 – температура насыщенного пара; t2 – температура перегретого пара.

Энтальпии перегретого пара для некоторых давлений и температур приведены в (табл. 4).

Перегревая свежий пар, мы сообщаем ему дополнительную теплоты, то есть увеличиваем начальную энтальпию. Это приводит к увеличению использованного теплопадения и повышению экономического к.п.д. установки работающей на перегретом паре. Кроме того, перегретый пар при движении в паропроводах не конденсируется в воду, так как конденсация может начаться только с момента, когда температура перегретого пара понизиться на столько, что он перейдет в насыщенное состояние. Отсутствие конденсации свежего пара особенно важно для паровых турбин, вода, скопившаяся в паропроводе и увлеченная паром в турбину, легко может разрушить лопатки турбины.

Преимущество перегретого пара настолько значительны и выгодность его применения настолько велика, что современные турбинные установки работают почти исключительно перегретым паром.

В настоящее время большинство тепловых электростанций строится с параметрами пара свыше 130 – 150 ата и свыше 565 0 С. В дальнейшем для самых мощных блоков предполагается по мере освоения новых жаростойких сталей повысить параметры до 300 ата и 656 0 С.

Читайте также:  Что такое отрицательное давление грунта

При расширении перегретого пара его температура понижается, по достижении температуры насыщения перегретый пар проходит через состояние сухого насыщенного пара и превращается во влажный пар.

Источник

Насыщенный пар

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются и . Очевидно, и — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Читайте также:  Нет давления в топливной системе бмв х5 дизель

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1) .

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2 ). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1) , напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Источник

Adblock
detector