Меню

Давление атмосферы на планетах солнечной системы

О погоде на планетах Солнечной системы

На самом деле, даже в будущем, когда отпуск где-нибудь в окрестностях Юпитера будет таким же обычным делом, как сегодня – на египетском пляже, главным туристическим центром все равно останется Земля. Причина этому проста: здесь всегда хорошая погода. А вот на других планетах и спутниках с этим совсем плохо.

Меркурий

Поверхность планеты Меркурий напоминает лунную

Хотя атмосферы у Меркурия нет вовсе, климат здесь, все же, имеется. И создает его, конечно, обжигающая близость Солнца. А поскольку воздух и вода не могут эффективно переносить тепло с одной части планеты на другую, здесь встречаются поистине смертоносные перепады температуры.

На дневной стороне Меркурия поверхность может прогреваться до 430 градусов Цельсия – достаточно, чтобы расплавилось олово, а на ночной – опускаться до — 180 градусов Цельсия. На фоне ужасающей жары рядом, на дне некоторых кратеров так холодно, что в этой вечной тени миллионы лет сохраняется грязноватый лед.

Ось вращения Меркурия не наклонена, как у Земли, а строго перпендикулярна орбите. Поэтому сменой сезонов здесь не полюбуешься: одна и та же погода стоит круглый год. Вдобавок к этому и день на планете длится примерно полтора наших года.

Венера

Кратеры на поверхности Венеры

Скажем прямо: не ту планету назвали Венерой. Да, в рассветном небе она действительно сияет, как чистой воды драгоценный камень. Но это пока Вы не познакомитесь с ней поближе. Соседнюю планету можно рассматривать в качестве наглядного пособия по вопросу о том, что способен сотворить перешедший все границы парниковый эффект.

Атмосфера Венеры невероятно плотна, неспокойна и агрессивна. Состоя по большей части из углекислого газа, она поглощает больше солнечной энергии, чем тот же Меркурий, хотя находится от Солнца намного дальше него. Поэтому на планете еще жарче: почти не меняясь с течением года, температура здесь держится в районе 480 градусов Цельсия. Добавьте сюда атмосферное давление, которое на Земле можно получить разве что погрузившись в океан на километровую глубину, и Вы вряд ли захотите здесь оказаться.

Но это еще не вся правда о скверном характере красавицы. На поверхности Венеры беспрерывно извергаются мощнейшие вулканы, наполняя атмосферу сажей и соединениями серы, которые быстро превращаются в серную кислоту. Да, на этой планете идут кислотные дожди – причем действительно кислотные, которые легко оставили бы раны на коже и разъели фототехнику туристов.

Впрочем, туристы не смогли бы здесь даже выпрямиться, чтобы сделать снимок: атмосфера Венеры вращается гораздо быстрее ее самой. На Земле воздух огибает планету почти за год, на Венере – за четыре часа, порождая постоянный ветер ураганной силы. Неудивительно, что до сих пор даже специально подготовленные космические аппараты не смогли просуществовать дольше нескольких минут в этом отвратительном климате. Как хорошо, что на нашей родной планете нет такого.
Марс

Атмосфера Марса, снимок получен искусственным спутником «Викинг» в 1976. Слева виден «кратер-смайлик» Галле

Увлекательные находки, которые сделаны на Красной планете за последние годы, показывают, что в далеком прошлом Марс был совсем другим. Миллиарды лет назад это была влажная планета с неплохой атмосферой и обширными водоемами. Кое-где на нем остались следы древней береговой линии – но это всё: сегодня сюда лучше не попадать. Современный Марс – это голая и мертвая ледяная пустыня, по которой то и дело проносятся мощные пылевые бури.

Плотной атмосферы, которая могла бы удерживать тепло и воду, на планете давно нет. Как она исчезла, еще не очень понятно, но скорее всего, Марс просто не обладает достаточной «притягательной силой»: примерно вдвое меньше Земли, он обладает почти втрое меньшей гравитацией.

В итоге на полюсах здесь царит глубокий холод и сохраняются полярные шапки, состоящие, в основном, из «сухого снега» – замерзшего углекислого газа. Стоит признать, что близ экватора температура днем может быть очень комфортной, около 20 градусов Цельсия. Но, впрочем, ночью она все равно упадет на несколько десятков градусов ниже нуля.

Несмотря на откровенно слабую атмосферу Марса, снеговые бури у его полюсов и пылевые в остальных частях – вовсе не редкость. Самумы, хамсины и прочие изнурительные пустынные ветры, несущие мириады всепроникающих и колючих песчинок, ветры, с которыми на Земле сталкиваются лишь в некоторых регионах, здесь могут охватить всю планету, на несколько дней сделав ее совершенно нефотографируемой.

Юпитер и окрестности

Чтобы оценить масштаб юпитерианских штормов, даже мощного телескопа не требуется. Самый внушительный из них – Большое красное пятно – не утихает уже несколько столетий, а размеры имеет втрое больше всей нашей Земли. Впрочем, и он скоро может потерять положение долговременного лидера. Несколько лет назад астрономы обнаружили на Юпитере новый вихрь – Овал ВА, который пока не достигает размеров Большого красного пятна, но растет угрожающе быстро.

Нет, Юпитер вряд ли привлечет даже любителей экстремального отдыха. Ураганные ветры здесь дуют постоянно, они охватывают всю планету, двигаясь со скоростью под 500 км/ч, причем нередко в противоположных направлениях, что создает на их границах ужасающие турбулентные вихри (такие, как знакомое нам Большое красное пятно, или Овал ВА).

Кроме температуры ниже — 140 градусов Цельсия и смертельной силы притяжения, нужно не забыть об еще одном факте – на Юпитере негде гулять. Эта планета – газовый гигант, вообще лишенный определенной твердой поверхности. И если б даже какому-то отчаянному скайдайверу удалось нырнуть в его атмосферу, закончил бы он в полужидкой глубине планеты, где колоссальная гравитация создает материю экзотических форм – скажем, сверхтекучий металлический водород.

Зато обычным дайверам стоит обратить внимание на один из спутников планеты-великана – Европу. Вообще, из множества спутников Юпитера по крайней мере два в будущем наверняка смогут претендовать на звание «туристической Мекки».

Например, Европа целиком покрыта океаном соленой воды. Ныряльщику здесь раздолье – глубина достигает 100 км – если только пробиться сквозь ледяную корку, которая охватывает весь спутник. Пока никто не знает, что обнаружит на Европе будущий последователь Жака-Ива Кусто: некоторые планетологи предполагают, что здесь могут найтись условия, подходящие и для жизни.

Другой юпитерианский спутник – Ио, без сомнения, станет любимчиком фотоблогеров. Мощная гравитация близкой и громадной планеты постоянно деформирует, «мнёт» спутник и нагревает его недра до огромных температур. Эта энергия прорывается на поверхность в областях геологической активности и питает сотни постоянно действующих вулканов. Из-за слабого притяжения на спутнике извержения выбрасывают впечатляющие потоки, которые поднимаются на сотни километров в высоту. Фотографов ждут чрезвычайно аппетитные кадры!

Сатурн с «пригородами»

Не менее заманчив с точки зрения фотоискусства, конечно, Сатурн со своими блистательными кольцами. Особый интерес может представлять необычная буря у северного полюса планеты, имеющая форму почти правильного шестиугольника со сторонами почти по 14 тыс. км.

Но для нормального отдыха Сатурн совсем не приспособлен. В общем и целом, это такой же газовый гигант, как Юпитер, только хуже. Атмосфера здесь холодная и плотная, а местные ураганы могут двигаться быстрее звука и быстрее пули – зафиксирована скорость более 1600 км/ч.

А вот климат спутника Сатурна Титана может привлечь целую толпу олигархов. Дело, правда, вовсе не в удивительной мягкости погоды. Титан – единственное известное нам небесное тело, на котором имеется круговорот жидкости, как на Земле. Только роль воды здесь играют. жидкие углеводороды.

Те самые вещества, которые на Земле составляют главное богатство страны – природный газ (метан) и другие горючие соединения – на Титане присутствуют в избытке, в жидкой форме: для этого тут достаточно холодно (- 162 градусов Цельсия). Метан клубится в облаках и проливается дождями, наполняет реки, которые впадают в почти полноценные моря. Качать – не перекачать!

Уран

Не самая далекая, но самая холодная планета во всей Солнечной системе: «столбик термометра» здесь может опускаться до неприятной отметки в − 224 градусов Цельсия. Это ненамного теплее абсолютного нуля. Почему-то – возможно, из-за столкновения с каким-то большим телом – Уран вращается лежа на боку, и северный полюс планеты повернут в сторону Солнца. Помимо мощных ураганов, здесь не на что смотреть.

Нептун и Тритон

Нептун (вверху) и Тритон (ниже)

Как и другие газовые гиганты, Нептун – место совсем неспокойное. Бури здесь могут достигать размеров больше всей нашей планеты и двигаться на рекордной известной нам скорости: почти 2500 км/ч. В остальном – это скучное место. Посетить Нептун стоит разве что из-за одного из его спутников – Тритона.

В целом Тритон так же холоден и однообразен, как его планета, но туристов всегда интригует все преходящее и гибнущее. Тритон как раз из таких: спутник медленно сближается с Нептуном, и спустя некоторое время будет разорван его гравитацией. Часть обломков упадет на планету, а часть может образовать некое подобие кольца, как у Сатурна. Точно сказать, когда это произойдет, пока не получается: где-то через 10 или 100 млн лет. Так что стоит поторопиться, чтобы успеть увидеть Тритон – знаменитый «Гибнущий спутник».

Читайте также:  Препараты для снижения артериального давления при тахикардии

Плутон

Лишенный высокого звания планеты, Плутон остался в карликах, но можно смело сказать: это очень странное и негостеприимное место. Орбита Плутона очень длинна и сильно вытянута в овал, из-за чего год здесь длится почти 250 земных лет. За это время погода успевает сильно измениться.

Пока на карликовой планете царит зима, она замерзает целиком. Приближаясь к Солнцу, Плутон разогревается. Поверхностный лед, состоящий из метана, азота и угарного газа, начинает испаряться, создавая тонкую атмосферную оболочку. Временно Плутон становится похож на вполне полноценную планету, а заодно и на комету: из-за карликовых размеров газ не удерживается, а уносится прочь с него, создавая хвост. Нормальные планеты так себя не ведут.

Все эти климатические аномалии вполне понятны. Жизнь возникла и развивалась именно в земных условиях, поэтому здешний климат для нас практически идеален. Даже самые ужасные сибирские морозы и тропические бури выглядят детскими шалостями в сравнении с тем, что ждет отпускников на Сатурне или Нептуне. Поэтому наш Вам совет на будущее: не стоит тратить долгожданные дни отдыха на эти экзотические места.
Лучше будем беречь нашу собственную уютную планету, чтобы и тогда, когда межпланетные путешествия станут доступны, наши потомки могли отдохнуть на египетском пляже или просто за городом, на чистой речке.

Источник

Атмосферы планет

Характеристика атмосферы планет Солнечной системы. Температура поверхности Меркурия. Атмосфера и ионосфера Венеры. Особенности деления атмосферы Земли. Примерный состав, строение атмосферы Марса, Сатурна, Урана и Нептуна. Характеристика колец Юпитера.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 25.10.2015
Размер файла 24,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат на тему: «Атмосферы планет»

Атмосфера Меркурия имеет крайне низкую плотность. Она состоит из водорода, гелия, кислорода, паров кальция, натрия и калия. Водород и гелий планета, вероятно, получает от Солнца, а металлы испаряются с ее поверхности. «Атмосферой» эту тонкую оболочку можно назвать лишь с большой натяжкой. Давление у поверхности планеты в 500 млрд раз меньше, чем у поверхности Земли (это меньше, чем в современных вакуумных установках на Земле).

Максимальная температура поверхности Меркурия, зарегистрированная датчиками, +410 °С. Средняя температура ночного полушария равна -162 °С, а дневного +347 °С (этого достаточно, чтобы расплавить свинец или олово). Перепады температур из-за смены времен года, вызванной вытянутостью орбиты, на дневной стороне достигают 100 °С. На глубине 1 м температура постоянна и равна +75 °С, ведь пористый грунт плохо проводит тепло. Органическая жизнь на Меркурии исключается.

Атмосфера Венеры крайне жаркая и сухая. Температура на поверхности достигает своего максимума, примерно у отметки 480°С. В атмосфере Венеры содержится в 105 раз больше газа, чем в атмосфере Земли. Давление этой атмосферы у поверхности очень велико, в 95 раз выше, чем на Земле. Космические корабли приходится конструировать так, чтобы они выдерживали сокрушительную, раздавливающую силу атмосферы.

В 1970 г. первый космический корабль, прибывший на Венеру, смог выдержать страшную жару лишь около одного часа — этого как раз хватило, чтобы послать на Землю данные об условиях на поверхности. Российские летательные аппараты, совершившие посадку на Венеру в 1982 г., послали на Землю цветные фотографии с изображением острых скал.

Благодаря парниковому эффекту, на Венере стоит ужасная жара. Атмосфера, представляющая собой плотное одеяло из углекислого газа, удерживает тепло, пришедшее от Солнца. В результате скапливается большое количество тепловой энергии.

Атмосфера Венеры разделена на несколько слоёв. Наиболее плотная часть атмосферы — тропосфера, начинается на поверхности планеты и простирается вплоть до 65 км. Ветры у раскалённой поверхности слабые, однако в верхней части тропосферы температура и давление уменьшаются до земных значений, и скорость ветра возрастает до 100 м/с.

Атмосферное давление на поверхности Венеры в 92 раза выше, чем на Земле, и сравнимо с давлением, создаваемым слоем воды на глубине 910 метров. Из-за такого высокого давления углекислый газ фактически является уже не газом, а сверхкритическим флюидом. Атмосфера Венеры имеет массу 4,8·1020 кг, что в 93 раза превышает массу всей атмосферы Земли, а плотность воздуха у поверхности составляет 67 кг/м3, то есть 6,5 % от плотности жидкой воды на Земле.

Тропосфера Венеры содержит 99 % всей атмосферы планеты по массе. 90 % атмосферы Венеры находится в пределах 28 км от поверхности. На высоте 50 км атмосферное давление примерно равно давлению на поверхности Земли. На ночной стороне Венеры облака можно обнаружить даже в 80 км над поверхностью.

Верхняя атмосфера и ионосфера

Мезосфера Венеры находится в интервале между 65 и 120 км. Далее начинается термосфера, достигающая верхней границы атмосферы (экзосферы) на высоте 220—350 км.

Мезосфера Венеры может быть разделена на два уровня: нижний (62—73 км) и верхний (73—95) км. В первом слое температура почти постоянна и составляет 230К (?43 °С). Этот уровень совпадает с верхним слоем облаков. На втором уровне температура начинает понижаться, опускаясь до 165 К (?108 °C) на высоте 95 км. Это самое холодное место на дневной стороне атмосферы Венеры. Далее начинается мезопауза, которая является границей между мезосферой и термосферой и находится между 95 и 120 км. На дневной стороне мезопаузы температура возрастает до 300—400 К (27—127 °C) — значений, преобладающих в термосфере. В противоположность этому, ночная сторона термосферы является самым холодным местом на Венере с температурой 100К (?173 °C). Её иногда называют криосферой. В 2015 году с помощью зонда «Венера-Экспресс» учёные зафиксировали тепловую аномалию в промежутке высот от 90 до 100 километров — средние показатели температур тут выше на 20-40 градусов и равняются 220-224 градусам Кельвина.

Венера имеет вытянутую ионосферу, расположенную на высоте 120—300 км и почти совпадающую с термосферой. Высокие уровни ионизации сохраняются только на дневной стороне планеты. На ночной стороне концентрация электронов практически равна нулю. Ионосфера Венеры состоит из трёх слоев: 120—130 км, 140—160 км и 200—250 км. Также может быть дополнительный слой в районе 180 км. Максимальная плотность электронов (число электронов в единице объёма) 3·1011 м3 достигается во втором слое вблизи подсолнечной точки. Верхняя граница ионосферы — ионопауза — расположена на высоте 220—375 км. Основные ионы в первом и втором слое — это O2+ ионы, в то время как третий слой состоит из O+ ионов. Согласно наблюдениям, ионосферная плазма находится в движении, а солнечная фотоионизация на дневной стороне и рекомбинация ионов на ночной являются процессами, главным образом, ответственными за ускорение плазмы до наблюдаемых скоростей. Плазменный поток, видимо, достаточен для поддержания наблюдаемого уровня концентрации ионов на ночной стороне.

Атмосфера планеты Земля, одна из геосфер, смесь газов, окружающих Землю, и содержатся благодаря силе тяжести. Атмосфера в основном состоит из азота (N2, 78%) и кислорода (O2, 21%; O3, 10%). Остальные (

1%) состоит в основном из аргона (0,93%) с небольшими примесями других газов, в частности углекислого газа (0,03%). Кроме того атмосфера содержит около 1,3 ч 1,5 Ч 10кг воды, основную массу которой сосредоточено в тропосфере.

Согласно изменениям температуры с высотой в атмосфере выделяют следующие слои:

· Тропосфера — до 8-10 км в полярных областях и до 18 км — над экватором. В тропосфере сосредоточено почти 80% атмосферного воздуха, почти весь водяной пар, здесь образуются облака и выпадают осадки. Теплообмен в тропосфере осуществляется преимущественно конвективно. Процессы, происходящие в тропосфере, непосредственно влияют на жизнь и деятельность людей. Температура в тропосфере с высотой понижается в среднем на 6 ° C на 1 км, а давление — на 11 мм рт. в. на каждые 100 м. Условной границей тропосферы считают тропопаузы, в которой снижение температуры с высотой прекращается.

· Стратосфера — от тропопаузы до стратопаузе, которая расположена на высоте около 50-55 км. Характеризуется незначительным увеличением температуры с высотой, которая достигает локального максимума на верхней границе. На высоте 20-25 км в стратосфере располагается слой озона, который защищает живые организмы от губительного воздействия ультрафиолетового излучения.

· Мезосфера — расположена на высотах 55-85 км. Температура постепенно падает (от 0 ° C в стратопаузе до -70 ч -90 ° C в мезопаузе).

· Термосфера — пролегает на высотах от 85 до 400-800 км. Температура растет с высотой (от 200 K до 500-2000 K в турбопаузы). По степени ионизации атмосферы в ней выделяют нейтральный слой (нейтросфера) — до высоты 90 км, и ионизированный слой — ионосферу — выше 90 км. По однородности атмосферу подразделяют на гомосферу (однородную атмосферу постоянного химического состава) и гетеросферу (состав атмосферы меняется с высотой). Условным пределом между ними на высоте около 100 км является гомопауза. Верхняя часть атмосферы, где концентрация молекул снижается настолько, что они движутся преимущественно баллистическими траекториями, почти без столкновений между собой, называется экзосфера. Она начинается на высоте около 550 км, состоящий преимущественно гелия и водорода и постепенно переходит в межпланетное пространство.

Читайте также:  Двигатель не заводится не горит лампа давления масла при

Несмотря на то, что масса атмосферы составляет лишь одну миллионную долю массы Земли, она играет решающую роль в различных природных циклах (круговороте воды, углеродном цикле и азотном цикле). Атмосфера является промышленным источником азота, кислорода и аргона, которые получают путем фракционной дистилляции сжиженного воздуха.

Атмосфера Марса открыта была еще до полета автоматических межпланетных станции к планете. Благодаря противостояниям планеты, которые случаются раз в три года и спектральному анализу, астрономы уже в 19 веке знали, что она имеет весьма однородный состав, более 95% которого составляет CO2.

В 20 веке, благодаря межпланетным зондам мы узнали, что атмосфера Марса и его температура сильно взаимосвязаны, ведь благодаря переносу мельчайших частичек оксида железа возникают огромные пылевые бури, которые могут охватить половину планеты, попутно подняв ее температуру.

Газовая оболочка планеты состоит из состоит из 95% углекислого газа, 3% азота, 1,6% аргона, и следовых количеств кислорода, водяного пара и других газов. Кроме того, она очень сильно наполнена мелкими частицами пыли (в основном из оксида железа), которые придают ей красноватый оттенок. Благодаря сведениям о частичках оксида железа, ответить на вопрос какого цвета атмосфера, совсем не трудно.

Почему атмосфера красной планеты состоит из углекислого газа? На планете нет тектоники плит вот уже в течение миллиардов лет. Отсутствие движения плит позволило вулканическим точкам извергать магму на поверхность миллионы лет подряд. Углекислый газ также является продуктом извержения и это единственный газ, которым постоянно пополняется атмосфера, собственно это фактически единственная причина, почему она существует. К тому же планета лишилась своего магнитного поля, что способствовало тому, что более легкие газы уносились солнечным ветром. Из-за непрерывных извержений, появилось множество больших вулканических гор. Гора Олимп, является крупнейшей горой в Солнечной системе.

Ученые считают, что Марс растерял всю свою атмосферу, из-за того, что потерял свою магнитосферу около 4 миллиардов лет назад. Когда-то газовая оболочка планеты была плотнее и магнитосфера защищала от солнечного ветра планету. Солнечный ветер, атмосфера и магнитосфера сильно взаимосвязаны. Солнечные частицы взаимодействует с ионосферой и уносит из нее молекулы, снижая плотность. Это и является разгадкой на вопрос куда делась атмосфера. Эти ионизированные частицы были обнаружены космическими аппаратами, в пространстве позади Марса. Это приводит к тому, что на поверхности давление в среднем 600 Па, по сравнению со средним давлением на Земле 101300 Па.

Атмосфера делится на четыре основных слоя: нижний, средний, верхний и экзосфера. Нижние слои это теплая область (температура около 210 К). Она нагревается от пыли в воздухе (пыль 1,5 мкм в поперечнике) и теплового излучения от поверхности.

Следует учесть, что, несмотря на очень большую разрежённость, концентрация углекислого газа, в газовой оболочке планеты, примерно в 23 раза больше, чем в нашей. Поэтому, не такая уж и дружелюбная атмосфера Марса, нельзя дышать в ней не только людям, но и другим земным организмам.

Средняя — похожа на Земную. Верхние слои атмосферы нагревается от солнечного ветра и там температура гораздо выше, чем на поверхности. Это тепло заставляет газ покидать газовую оболочку. Экзосфера начинается примерно в 200 км от поверхности и не имеет четкой границы. Как видите, распределение температуры по высоте, достаточно предсказуемо для планеты земной группы.

Единственная видимая часть Юпитера — это атмосферные облака и пятна. Облака располагаются параллельно экватору в зависимости от восходящих тёплых или нисходящих холодных потоков, они светлые и тёмные атмосфера планета меркурий земля

В атмосфере Юпитера свыше 87% по объёму водорода и

13% гелия, остальные газы, включая метан, аммиак, водяной пар находятся в виде примесей на уровне десятых и сотых долей процента.

Давлению 1 атм соответствует температура 170 К. Тропопауза находится на уровне с давлением 0,1 атм и температурой 115 К. Во всей нижележащей тропосфере высотных ход температуры можно охарактеризовать адиабатическим градиентом в водородногелиевой среде — около 2 К на километр. Спектр радиоизлучения Юпитера также свидетельствует об устойчивом росте радиояркостной температуры с глубиной. Выше тропопаузы расположена область температурной инверсии, где температура вплоть до давлений порядка 1 мбар постепенно нарастает до

180 К. Это значение сохраняется в мезосфере, которая характеризуется почти изотермией до уровня с давлением

10-6 атм, а выше начинается термосфера, переходящая в экзосферу с температурой 1250 К.

Выделяется три основных слоя:

1. Самый верхний, при давлении около 0,5 атм, состоящий из кристаллического аммиака.

2. Промежуточный слой состоит из гидросульфида аммония

3. Нижний слой, при давлении в несколько атмосфер, состоящий из обычного водяного льда.

В некоторых моделях также допускается существования самого нижнего, четвёртого слоя облаков, состоящего из жидкого аммиака. Такая модель в целом удовлетворяет совокупности имеющихся экспериментальных данных и хорошо объясняет окраску зон и поясов: расположенные выше в атмосфере светлые зоны содержат ярко-белые кристаллы аммиака, а расположенные глубже пояса — красно-коричневые кристаллы гидросульфида аммония.

Подобно Земле и Венере, в атмосфере Юпитера зарегистрированы молнии. Судя по запечатленным на фотографиях «Вояджера» световым вспышкам, интенсивность разрядов чрезвычайно велика. Пока неясно, однако, в какой мере эти явления связаны с облаками, поскольку вспышки обнаружены на больших высотах, чем ожидалось.

Циркуляция на Юпитере

Характерным движением на Юпитере является наличие зональной циркуляции тропических и умеренных широт. Сама циркуляция является осесимметричной, то есть почти не имеющей отличий на различных долготах. Скорости восточных и западных ветров в зонах и поясах составляют от 50 до 150 м/с. на экваторе дует ветер в восточном направлении со скоростью около 100 м/с.

Структура зон и поясов различается характером вертикальных движений от которых зависит формирование горизонтальных течений. В светлых зонах, температура которых ниже, движения восходящие, облака плотнее и располагаются на более высоких уровнях в атмосфере. В более тёмных (красно- коричневых) поясах с более высокой температурой движения нисходящие, они расположены глубже в атмосфере и закрыты менее плотными облаками.

Кольца Юпитера, окружая планету перпендикулярно экватору, находятся на высоте 55 000 км от атмосферы.

Они были открыты зондом «Вояджер-1» в марте 1979 г, с тех пор с Земли за ними ведётся наблюдение. Существуют два основных кольца и одно, очень тонкое, внутреннее с характерной оранжевой окраской. Толщина колец, похоже, не превышает 30 км, а ширина — 1000 км.

В отличие от колец Сатурна, кольца Юпитера темны (альбедо (отражательная способность) — 0,05). И, вероятно, состоят из очень небольших твердых частиц метеорной природы. Частицы колец Юпитера, скорее всего, не остаются в них долго (из-за препятствий, создаваемых атмосферой и магнитным полем). Следовательно, раз кольца постоянны, то они должны непрерывно пополняться. Небольшие спутник Метис и Адрастея, чьи орбиты лежат в пределах колец, — очевидные источники таких пополнений. С Земли кольца Юпитера могут быть замечены при наблюдении только в инфракрасном диапазоне.

Верхние слои атмосферы Сатурна состоят на 96,3 % из водорода (по объёму) и на 3,25 % — из гелия (по сравнению с 10 % в атмосфере Юпитера). Имеются примеси метана, аммиака, фосфина, этана и некоторых других газов. Аммиачные облака в верхней части атмосферы мощнее юпитерианских. Облака нижней части атмосферы состоят из гидросульфида аммония (NH4SH) или воды.

По данным «Вояджеров», на Сатурне дуют сильные ветры, аппараты зарегистрировали скорости воздушных потоков 500 м/с. Ветры дуют в основном в восточном направлении (по направлению осевого вращения). Их сила ослабевает при удалении от экватора; при удалении от экватора появляются также и западные атмосферные течения. Ряд данных указывают, что циркуляция атмосферы происходит не только в слое верхних облаков, но и на глубине, по крайней мере, до 2 тыс. км. Кроме того, измерения «Вояджера-2» показали, что ветры в южном и северном полушариях симметричны относительно экватора. Есть предположение, что симметричные потоки как-то связаны под слоем видимой атмосферы.

В атмосфере Сатурна иногда появляются устойчивые образования, представляющие собой сверхмощные ураганы. Аналогичные объекты наблюдаются и на других газовых планетах Солнечной системы (см. Большое красное пятно на Юпитере, Большое тёмное пятно на Нептуне). Гигантский «Большой белый овал» появляется на Сатурне примерно один раз в 30 лет, в последний раз он наблюдался в 1990 году (менее крупные ураганы образуются чаще).

12 ноября 2008 года камеры станции «Кассини» получили изображения северного полюса Сатурна в инфракрасном диапазоне. На них исследователи обнаружили полярные сияния, подобные которым не наблюдались ещё ни разу в Солнечной системе. Также данные сияния наблюдались в ультрафиолетовом и видимом диапазонах. Полярные сияния представляют собой яркие непрерывные кольца овальной формы, окружающие полюс планеты. Кольца располагаются на широте, как правило, в 70—80°. Южные кольца располагаются на широте в среднем 75 ± 1°, а северные — ближе к полюсу примерно на 1,5°, что связано с тем, что в северном полушарии магнитное поле несколько сильнее. Иногда кольца становятся спиральной формы вместо овальной.

Читайте также:  На какой руке носят магнитный браслет при повышенном давлении

В отличие от Юпитера полярные сияния Сатурна не связаны с неравномерностью вращения плазменного слоя во внешних частях магнитосферы планеты. Предположительно, они возникают из-за магнитного пересоединения под действием солнечного ветра. Форма и вид полярных сияний Сатурна сильно меняются с течением времени. Их расположение и яркость сильно связаны с давлением солнечного ветра: чем оно больше, тем сияния ярче и ближе к полюсу. Среднее значение мощности полярного сияния составляет 50 ГВт в диапазоне 80—170 нм (ультрафиолет) и 150—300 ГВт в диапазоне 3—4 мкм (инфракрасный).

Во время бурь и штормов на Сатурне наблюдаются мощные разряды молнии. Электромагнитная активность Сатурна, вызванная ими колеблется с годами от почти полного отсутствия до очень сильных электрических бурь.

28 декабря 2010 года «Кассини» сфотографировал шторм, напоминающий сигаретный дым. Ещё один, особенно мощный шторм, был зафиксирован 20 мая 2011 года.

Атмосфера Урана, так же как и атмосферы Юпитера и Сатурна, состоит в основном из водорода и гелия. На больших глубинах она содержит значительные количества воды, аммиака и метана, что является отличительной чертой атмосфер Урана и Нептуна. Обратная картина наблюдается в верхних слоях атмосферы, которые содержит очень мало веществ тяжелее водорода и гелия. Атмосфера Урана — самая холодная из всех планетарных атмосфер в Солнечной системе, с минимальной температурой 49 K.

Атмосфера Урана может быть разделена на три основных слоя:

1. Тропосфера — занимает промежуток высот от ?300 км до 50 км (за 0 принята условная граница, где давление составляет 1 бар;) и диапазон давления от 100 до 0,1 бар

2. Стратосфера — покрывает высоты от 50 до 4000 км и давления между 0,1 и 10?10 бар

3. Экзосфера — простирается от высоты 4000 км до нескольких радиусов планеты, давление в этом слое при удалении от планеты стремится к нулю.

Примечательно, что в отличие от земной, атмосфера Урана не имеет мезосферы.

В тропосфере существует четыре облачных слоя: метановые облака на границе, соответствующей давлению примерно в 1,2 бар; сероводородные и аммиачные облака в слое давлений 3-10 бар; облака из гидросульфида аммония при 20-40 бар, и, наконец, водяные облака из кристалликов льда ниже условной границы давления 50 бар. Только два верхних облачных слоя доступны прямому наблюдению, существование же нижележащих слоев предсказано только теоретически. Яркие тропосферные облака редко наблюдаются на Уране, что, вероятно, связано с низкой активностью конвекции в глубинных областях планеты. Тем не менее, наблюдения таких облаков использовались для измерения скорости зональных ветров на планете, которая доходит до 250 м/с.

Об атмосфере Урана в настоящее время имеется меньше сведений, чем об атмосферах Сатурна и Юпитера. По состоянию на май 2013 года только один космический корабль, Вояджер 2, изучал Уран с близкого расстояния. Никаких других миссий на Уран в настоящее время не запланировано.

В верхних слоях атмосферы обнаружен водород и гелий, которые составляют соответственно 80 и 19 % на данной высоте. Также наблюдаются следы метана. Заметные полосы поглощения метана встречаются на длинах волн выше 600 нм в красной и инфракрасной части спектра. Как и в случае с Ураном, поглощение красного света метаном является важнейшим фактором, придающим атмосфере Нептуна синий оттенок, хотя яркая лазурь Нептуна отличается от более умеренного аквамаринового цвета Урана. Так как содержание метана в атмосфере Нептуна не сильно отличается от такового в атмосфере Урана, предполагается, что существует также некий, пока неизвестный, компонент атмосферы, способствующий образованию синего цвета. Атмосфера Нептуна подразделяется на 2 основные области: более низкая тропосфера, где температура снижается вместе с высотой, и стратосфера, где температура с высотой, наоборот, увеличивается. Граница между ними, тропопауза, находится на уровне давления в 0,1 бар. Стратосфера сменяется термосферой на уровне давления ниже, чем 10?4 — 10?5 микробар. Термосфера постепенно переходит в экзосферу. Модели тропосферы Нептуна позволяют полагать, что в зависимости от высоты, она состоит из облаков переменных составов. Облака верхнего уровня находятся в зоне давления ниже одного бара, где температура способствует конденсации метана.

При давлении между одним и пятью барами, формируются облака аммиака и сероводорода. При давлении более 5 бар облака могут состоять из аммиака, сульфида аммония, сероводорода и воды. Глубже, при давлении в приблизительно 50 бар, могут существовать облака из водяного льда, при температуре, равной 0 °C. Также, не исключено, что в данной зоне могут быть найдены облака из аммиака и сероводорода. Высотные облака Нептуна наблюдались по отбрасываемым ими теням на непрозрачный облачный слой ниже уровнем. Среди них выделяются облачные полосы, которые «обёртываются» вокруг планеты на постоянной широте. У данных периферических групп ширина достигает 50—150 км, а сами они находятся на 50—110 км выше основного облачного слоя. Изучение спектра Нептуна позволяет предполагать, что его более низкая стратосфера затуманена из-за конденсации продуктов ультрафиолетового фотолиза метана, таких как этан и ацетилен. В стратосфере также обнаружены следы циановодорода и угарного газа. Стратосфера Нептуна более тёплая, чем стратосфера Урана из-за более высокой концентрации углеводородов. По невыясненным причинам, термосфера планеты имеет аномально высокую температуру около 750 К.. Для столь высокой температуры планета слишком далека от Солнца, чтобы оно могло так разогреть термосферу ультрафиолетовой радиацией. Возможно, данное явление является следствием атмосферного взаимодействия с ионами в магнитном поле планеты. Согласно другой теории, основой механизма разогревания являются волны гравитации из внутренних областей планеты, которые рассеиваются в атмосфере. Термосфера содержит следы угарного газа и воды, которая попала туда, возможно, из внешних источников, таких как метеориты и пыль.

Размещено на Allbest.ru

Подобные документы

Строение Солнечной системы, внешние области. Происхождение естественных спутников планет. Общность газовых планет-гигантов. Характеристика поверхности, атмосферы, состава Меркурия, Сатурна, Венеры, Земли, Луна, Марса, Урана, Плутона. Пояса астероидов.

реферат [115,6 K], добавлен 07.05.2012

Строение и особенности планет солнечной системы, характеристика их происхождения. Возможные гипотезы происхождения планет. Расположение Солнца в галактике, его структура и состав. Краткая характеристика Меркурия, Венеры, Юпитера, Сатурна и др. планет.

курсовая работа [1,0 M], добавлен 19.05.2019

Проблема изучения солнечной системы. Открыты не все тайны и загадки даже нашей системы. Ресурсы других планет и астероидов нашей системы. Исследование Меркурия, Венеры, Марса, Юпитера, Сатурна, Урана, Нептуна, Плутона.

реферат [539,9 K], добавлен 22.04.2003

Понятие газовых гигантов. Юпитер как крупнейшая планета в Солнечной системе. Особенности Сатурна как небесного тела, обладающего системой колец. Специфика планетарной атмосферы Урана. Основные параметры Нептуна. Сравнительная характеристика этих планет.

презентация [1,2 M], добавлен 31.10.2014

Юпитер: общие сведения о планете и ее атмосфера. Состав юпитерианского океана. Спутники Юпитера и его кольцо. Редкие выбросы в атмосфере Сатурна. Кольца и спутники Сатурна. Состав атмосферы и температура Урана. Строение и состав Нептуна, его спутники.

реферат [27,2 K], добавлен 17.01.2012

Межпланетная система, состоящая из Солнца и естественных космических объектов, вращающихся вокруг него. Характеристика поверхности Меркурия, Венеры и Марса. Место расположения Земли, Юпитера, Сатурна и Урана в системе. Особенности пояса астероидов.

презентация [1,3 M], добавлен 08.06.2011

Построение графика распределения официально известных планет. Определение точных расстояний до Плутона и заплутоновых планет. Формула вычисления скорости усадки Солнца. Зарождение планет Солнечной системы: Земли, Марса, Венеры, Меркурия и Вулкана.

статья [1,5 M], добавлен 23.03.2014

Изучение основных параметров планет Солнечной Системы (Венера, Нептун, Уран, Плутон, Сатурн, Солнце): радиус, масса планеты, средняя температура, среднее расстояние от Солнца, структура атмосферы, нналичие спутников. Особенности строения известных звезд.

презентация [1,4 M], добавлен 15.06.2010

История образования атмосферы планеты. Баланс кислорода, состав атмосферы Земли. Слои атмосферы, тропосфера, облака, стратосфера, средняя атмосфера. Метеоры, метеориты и болиды. Термосфера, полярные сияния, озоносфера. Интересные факты об атмосфере.

презентация [399,0 K], добавлен 23.07.2016

Спостереження за положеннями зірок та планет. Рух зореподібних планет, розташованих поблизу екліптики. «Петлі» на небі верхніх планет — Марса, Юпітера, Сатурна, Урана і Нептуна. Створення теорій руху планет: основні практичні аспекти небесної механіки.

реферат [123,3 K], добавлен 18.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

Источник

Adblock
detector