Меню

Давление газа в цилиндре с поршнем не изменяется при температуре

Зависимость давления газа от объема

Убе­дим­ся в том, что мо­ле­ку­лы газа дей­стви­тель­но рас­по­ло­же­ны до­ста­точ­но да­ле­ко друг от друга, и по­это­му газы хо­ро­шо сжи­ма­е­мы.Возь­мем шприц и рас­по­ло­жим его пор­шень при­бли­зи­тель­но по­се­ре­дине ци­лин­дра. От­вер­стие шпри­ца со­еди­ним с труб­кой, вто­рой конец ко­то­рой на­глу­хо за­крыт. Таким об­ра­зом, неко­то­рая пор­ция воз­ду­ха будет за­клю­че­на в ци­лин­дре шпри­ца под порш­нем и в труб­ке.В ци­лин­дре под порш­нем за­клю­че­но неко­то­рое ко­ли­че­ство воз­ду­ха. Те­перь по­ста­вим на по­движ­ный пор­шень шпри­ца груз. Легко за­ме­тить, что пор­шень немно­го опу­стит­ся. Это озна­ча­ет, что объем воз­ду­ха умень­шил­ся Дру­ги­ми сло­ва­ми, газы легко сжи­ма­ют­ся. Таким об­ра­зом, между мо­ле­ку­ла­ми газа име­ют­ся до­ста­точ­но боль­шие про­ме­жут­ки. По­ме­ще­ние груза на пор­шень вы­зы­ва­ет умень­ше­ние объ­е­ма газа. С дру­гой сто­ро­ны, после уста­нов­ки груза пор­шень, немно­го опу­стив­шись, оста­нав­ли­ва­ет­ся в новом по­ло­же­нии рав­но­ве­сия. Это озна­ча­ет, что сила дав­ле­ния воз­ду­ха на пор­шень уве­ли­чи­ва­ет­ся и снова урав­но­ве­ши­ва­ет воз­рос­ший вес порш­ня с гру­зом . А по­сколь­ку пло­щадь порш­ня при этом оста­ет­ся неиз­мен­ной, мы при­хо­дим к важ­но­му за­клю­че­нию.

При умень­ше­нии объ­е­ма газа его дав­ле­ние уве­ли­чи­ва­ет­ся.

Будем пом­нить при этом, что масса газа и его тем­пе­ра­ту­ра в ходе опыта оста­ва­лись неиз­мен­ны­ми. Объ­яс­нить за­ви­си­мость дав­ле­ния от объ­е­ма можно сле­ду­ю­щим об­ра­зом. При уве­ли­че­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми уве­ли­чи­ва­ет­ся. Каж­дой мо­ле­ку­ле те­перь нужно прой­ти боль­шее рас­сто­я­ние от од­но­го удара со стен­кой со­су­да до дру­го­го. Сред­няя ско­рость дви­же­ния мо­ле­кул оста­ет­ся неиз­мен­ной .Сле­до­ва­тель­но, мо­ле­ку­лы газа реже уда­ря­ют­ся о стен­ки со­су­да, а это при­во­дит к умень­ше­нию дав­ле­ния газа. И, на­о­бо­рот, при умень­ше­нии объ­е­ма газа его мо­ле­ку­лы чаще уда­ря­ют­ся о стен­ки со­су­да, и дав­ле­ние газа уве­ли­чи­ва­ет­ся . При умень­ше­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми умень­ша­ет­ся

Зависимость давления газа от температуры

В преды­ду­щих опы­тах тем­пе­ра­ту­ра газа оста­ва­лась неиз­мен­ной, и мы изу­ча­ли из­ме­не­ние дав­ле­ния вслед­ствие из­ме­не­ния объ­е­ма газа. Те­перь рас­смот­рим слу­чай, когда объем газа оста­ет­ся по­сто­ян­ным, а тем­пе­ра­ту­ра газа из­ме­ня­ет­ся. Масса при этом также оста­ет­ся неиз­мен­ной. Со­здать такие усло­вия можно, по­ме­стив неко­то­рое ко­ли­че­ство газа в ци­линдр с порш­нем и за­кре­пив пор­шень

Из­ме­не­ние тем­пе­ра­ту­ры дан­ной массы газа при неиз­мен­ном объ­е­ме

Чем выше тем­пе­ра­ту­ра, тем быст­рее дви­жут­ся мо­ле­ку­лы газа.

— во-пер­вых, чаще про­ис­хо­дят удары мо­ле­кул о стен­ки со­су­да;

— во-вто­рых, сред­няя сила удара каж­дой мо­ле­ку­лы о стен­ку ста­но­вит­ся боль­ше. Это при­во­дит нас к еще од­но­му важ­но­му за­клю­че­нию. При уве­ли­че­нии тем­пе­ра­ту­ры газа его дав­ле­ние уве­ли­чи­ва­ет­ся. Будем пом­нить, что дан­ное утвер­жде­ние спра­вед­ли­во, если масса и объем газа в ходе из­ме­не­ния его тем­пе­ра­ту­ры оста­ют­ся неиз­мен­ны­ми.

Хранение и транспортировка газов.

За­ви­си­мость дав­ле­ния газа от объ­е­ма и тем­пе­ра­ту­ры часто ис­поль­зу­ет­ся в тех­ни­ке и в быту. Если тре­бу­ет­ся пе­ре­вез­ти зна­чи­тель­ное ко­ли­че­ство газа из од­но­го места в дру­гое, или когда газы необ­хо­ди­мо дли­тель­но хра­нить, их по­ме­ща­ют в спе­ци­аль­ные проч­ные ме­тал­ли­че­ские со­су­ды. Эти со­су­ды вы­дер­жи­ва­ют вы­со­кие дав­ле­ния, по­это­му с по­мо­щью спе­ци­аль­ных на­со­сов туда можно за­ка­чать зна­чи­тель­ные массы газа, ко­то­рые в обыч­ных усло­ви­ях за­ни­ма­ли бы в сотни раз боль­ший объем. По­сколь­ку дав­ле­ние газов в бал­ло­нах даже при ком­нат­ной тем­пе­ра­ту­ре очень ве­ли­ко, их ни в коем слу­чае нель­зя на­гре­вать или любым спо­со­бом пы­тать­ся сде­лать в них от­вер­стие даже после ис­поль­зо­ва­ния.

Газовые законы физики.

Физика реального мира в расчетах часто сводится к несколько упрощенным моделям. Наиболее применим такой подход к описанию поведения газов. Правила, установленные экспериментальным путем, были сведены различными исследователями в газовые законы физики и послужили появлению понятия «изопроцесс». Это такое прохождение эксперимента, при котором один параметр сохраняет постоянное значение. Газовые законы физики оперируют основными параметрами газа, точнее, его физического состояния. Температурой, занимаемым объемом и давлением. Все процессы, которые относятся к изменению одного или нескольких параметров и называются термодинамическими. Понятие изостатического процесса сводится к утверждению, что во время любого изменения состояния один из параметров остается неизменным. Это поведение так называемого «идеального газа», которое, с некоторыми оговорками, может быть применено к реальному веществу. Как отмечено выше, в реальности все несколько сложнее. Однако, с высокой достоверностью поведение газа при неизменной температуре характеризуется с помощью закона Бойля-Мариотта, который гласит:

Читайте также:  Регулятор давления задних тормозных цилиндров

Произведение объема на давление газа — величина постоянная. Это утверждение считается верным в том случае, когда температура не изменяется.

Этот процесс носит название «изотермический». При этом меняются два из трех исследуемых параметров. Физически все выглядит просто. Сожмите надутый шарик. Температуру можно считать неизменной. А в результате внутри шара повысится давление при уменьшении объема. Величина произведения двух параметров останется неизменной. Зная исходное значение хотя бы одного из них, можно легко узнать показатели второго. Еще одно правило в списке «газовые законы физики» — изменение объема газа и его температуры при одинаковом давлении. Это называется «изобарный процесс» и описывается с помощью закона Гей-Люсака. Соотношение объема и температуры газа неизменно. Это верно при условии постоянного значения давления в данной массе вещества. Физически тоже все просто. Если хоть раз заряжали газовую зажигалку или пользовались углекислотным огнетушителем, видели действие этого закона «вживую». Газ, выходящий из баллончика или раструба огнетушителя, быстро расширяется. Его температура резко падает. Можно обморозить кожу рук. В случае с огнетушителем — образуются целые хлопья углекислотного снега, когда газ под воздействием низкой температуры быстро переходит в твердое состояние из газообразного. Благодаря закону Гей-Люсака, можно легко узнать температуру газа, зная его объем в любой момент времени. Газовые законы физики описывают и поведение при условии неизменного занимаемого объема. Такой процесс называется изохорным и описывается законом Шарля, который гласит: При неизменном занимаемом объеме, отношение давления к температуре газа остается неизменным в любой момент времени.В реальности все знают правило: нельзя нагревать баллончики от освежителей воздуха и прочие сосуды, содержащие газ под давлением. Дело кончается взрывом. Происходит именно то, что описывает закон Шарля. Растет температура. Одновременно растет давление, так как объем не меняется. Происходит разрушение баллона в момент, когда показатели превышают допустимые. Так что, зная занимаемый объем и один из параметров, можно легко установить значение второго. Хотя газовые законы физики описывают поведение некой идеальной модели, их можно легко применять для предсказания поведения газа в реальных системах. Особенно в быту, изопроцессы могут легко объяснить, как работает холодильник, почему из баллончика освежителя вылетает холодная струя воздуха, из-за чего лопается камера или шарик, как работает разбрызгиватель и так далее.

Основы МКТ.

Молекулярно-кинетическая теория вещества— способ объяснения тепловых явлений, который связывает протекание теп­ловых явлений и процессов с особенностя­ми внутреннего строения вещества и изу­чает причины, которые обусловливают теп­ловое движение. Эта теория получила при­знание лишь в XX в., хотя исходит из древнегреческого атомного учения о стро­ении вещества.

Молекулярно-кинетическая тео­рия объясняет тепловые явле­ния особенностями движения и взаимодействия микрочастиц вещества

Молекулярно-кинетическая теория основывается на законах классичес­кой механики И. Ньютона, которые позво­ляют вывести уравнение движения микро­частиц. Тем не менее в связи с огромным их количеством (в 1 см 3 вещества находится около 10 23 молекул) невозможно ежесекундно с помощью законов классичес­кой механики однозначно описать движение каждой молекулы или атома. Поэтому для построения современной теории теплоты ис­пользуют методы математической статистики, которые объясняют течение тепловых явле­ний на основании закономерностей поведе­ния значительного количества микрочастиц.

Молекулярно-кинетическая тео­рия построена на основании обобщенных уравнений движе­ния огромного количества мо­лекул.

Молекулярно-кинетическая теория объяс­няет тепловые явления с позиций пред­ставлений о внутреннем строении вещества, то есть выясняет их природу. Это более глубокая, хотя и более сложная теория, которая объясняет сущность тепловых явле­ний и обусловливает законы термодинамики.

Оба существующих подхода — термодинамический подход и молекулярно-кинетическая теория — научно доказаны и взаимно дополняют друг друга, а не проти­воречат друг другу. В связи с этим изучение тепловых явлений и процессов обычно рассматривается с позиций или моле­кулярной физики, или термодинамики, в зависимости от того, как проще изложить материал.

Читайте также:  Домашний водопровод регулировка давления

Термодинамический и молекулярно-кинетический подходы взаимно дополняют друг друга при объяснении тепловых явлений и процессов.

Дата добавления: 2018-02-15 ; просмотров: 2978 ;

Источник

Физика

Для идеального газа, находящегося в сосуде под поршнем , необходимо учитывать следующее:

  • масса газа, находящегося в сосуде под поршнем, вследствие изменения термодинамических параметров газа не изменяется:
  • постоянным остается также количество вещества (газа):
  • плотность газа и концентрация его молекул (атомов) изменяются:

Пусть изменение состояния идеального газа, находящегося в цилиндрическом сосуде под поршнем, вызвано действием на поршень внешней силы F → (рис. 5.9).

Начальное и конечное состояния газа в сосуде под поршнем описываются следующими уравнениями:

p 1 V 1 = ν R T 1 , p 2 V 2 = ν R T 2 , >

где p 1 , V 1 , T 1 — давление, объем и температура газа в начальном состоянии; p 2 , V 2 , T 2 — давление, объем и температура газа в конечном состоянии; ν — количество вещества (газа); R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К).

Условия равновесия поршня, закрывающего идеальный газ в сосуде (см. рис. 5.9), в начале процесса и в конце процесса выглядят следующим образом:

M g + F A = F 1 , M g + F A + F = F 2 , >

где M — масса поршня; g — модуль ускорения свободного падения; F A — модуль силы атмосферного давления, F A = p A S ; p A — атмосферное давление; S — площадь сечения поршня; F 1 — модуль силы давления газа на поршень в начале процесса, F 1 = p 1 S ; p 1 — давление газа в сосуде в начальном состоянии; F — модуль силы, вызывающей сжатие газа; F 2 — модуль силы давления газа на поршень в конце процесса, F 2 = p 2 S ; p 2 — давление газа в сосуде в конечном состоянии.

Температура идеального газа, находящегося в сосуде под поршнем, может как изменяться, так и оставаться неизменной:

  • если процесс движения поршня происходит достаточно быстро, то температура газа изменяется —
  • если процесс происходит медленно, то температура газа остается постоянной –

Давление идеального газа, находящегося в сосуде под поршнем, также может изменяться или оставаться неизменным:

  • если в задаче сказано, что поршень является легкоподвижным, то давление газа под поршнем — неизменно (в том случае, когда из условия задачи не следует обратное) — p = const;
  • в остальных случаях давление газа под поршнем изменяется — p ≠ const.

Масса поршня , закрывающего газ в сосуде, либо равна нулю, либо имеет отличное от нуля значение:

  • если в задаче сказано, что поршень является легким или невесомым, то масса поршня считается равной нулю —
  • в остальных случаях поршень обладает определенной ненулевой массой —

Пример 19. В вертикальном цилиндре под легкоподвижным поршнем сечением 250 мм 2 и массой 1,80 кг находится 360 см 3 газа. Атмосферное давление равно 100 кПа. На поршень поставили гири, и он сжал газ до объема 240 см 3 . Температура газа при его сжатии не изменяется. Определить массу гирь.

Решение . На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 1 , действующая со стороны газа (до его сжатия);
  • сила давления газа F → 2 , действующая со стороны газа (после его сжатия);
  • m g → — вес гирь.

Условие равновесия поршня запишем в следующем виде:

где F 1 — модуль силы давления газа, F 1 = p 1 S ; p 1 — давление газа до сжатия; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; F A — модуль силы атмосферного давления, F A = p A S ; p A — атмосферное давление; g — модуль ускорения свободного падения;

где F 2 — модуль силы давления газа, F 2 = p 2 S ; p 2 — давление газа после сжатия; mg — вес гирь; m — масса гирь.

Считая процесс сжатия газа изотермическим, запишем уравнение Менделеева — Клапейрона для газа под поршнем следующим образом:

где V 1 — первоначальный объем газа под поршнем; ν — количество газа под поршнем; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T — температура газа (не изменяется в ходе процесса);

где V 2 — объем сжатого поршнем газа.

Читайте также:  Как влияет отвар овса на артериальное давление

и два условия равновесия, записанные в явном виде, образуют полную систему уравнений:

p 1 S = M g + p A S , p 2 S = M g + p A S + m g , p 1 V 1 = p 2 V 2 , >

которую требуется решить относительно массы гирь m .

Для этого выразим отношение давлений p 2 / p 1 из первой пары уравнений:

p 2 p 1 = M g + p A S + m g M g + p A S

и из третьего уравнения:

запишем равенство правых частей полученных отношений:

M g + p A S + m g M g + p A S = V 1 V 2 .

Отсюда следует, что искомая масса определяется формулой

m = ( M + p A S g ) ( V 1 V 2 − 1 ) .

Вычисление дает результат:

m = ( 1,80 + 100 ⋅ 10 3 ⋅ 250 ⋅ 10 − 6 10 ) ( 360 ⋅ 10 − 6 240 ⋅ 10 − 6 − 1 ) = 2,15 кг.

Указанное сжатие газа вызвано гирями массой 2,15 кг.

Пример 20. Открытый цилиндрический сосуд сечением 10 см 2 плотно прикрывают пластиной массой 1,2 кг. Атмосферное давление составляет 100 кПа, а температура окружающего воздуха равна 300 К. На сколько градусов нужно нагреть воздух в сосуде, чтобы он приподнял пластину?

Решение . На рисунке показаны силы, действующие на пластину после нагревания газа:

  • сила тяжести пластины M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → 2 , действующая на пластину со стороны нагретого газа.

Пластина находится в состоянии неустойчивого равновесия; условие равновесия пластины выглядит следующим образом:

где F 2 — модуль силы давления нагретого газа, F 2 = p 2 S ; p 2 — давление нагретого газа; S — площадь сечения сосуда; Mg — модуль силы тяжести пластины; M — масса пластины; g — модуль ускорения свободного падения; F A — модуль силы атмосферного давления, F A = p A S ; p A — атмосферное давление.

Запишем уравнение Менделеева — Клапейрона следующим образом:

  • для газа в сосуде до его нагревания

где p 1 — давление газа в сосуде до нагревания (совпадает с атмосферным давлением), p 1 = p A ; V — объем газа в сосуде; ν — количество вещества (газа) в сосуде; R — универсальная газовая постоянная, R = 8,31 Дж/(моль ⋅ К); T 1 — температура газа в сосуде до нагревания (совпадает с температурой окружающей среды);

  • для газа в сосуде после его нагревания

где p 2 — давление нагретого газа; T 2 — температура нагретого газа.

Два уравнения состояния газа (до и после нагревания) и условие равновесия пластины, записанные в явном виде, образуют полную систему уравнений:

p A V = ν R T 1 , p 2 V = ν R T 2 , p 2 S = M g + p A S ; >

систему необходимо решить относительно температуры T 2 , до которой следует нагреть газ.

Для этого делением первой пары уравнений

p A V p 2 V = ν R T 1 ν R T 2

получим выражение для давления нагретого газа:

и подставим его в третье уравнение системы:

p A T 2 S T 1 = M g + p A S .

Преобразуем полученное выражение к виду

T 2 = T 1 ( M g + p A S ) p A S = T 1 ( M g p A S + 1 ) ,

а затем найдем разность

Δ T = T 2 − T 1 = M g T 1 p A S .

Δ T = 1,2 ⋅ 10 ⋅ 300 100 ⋅ 10 3 ⋅ 10 ⋅ 10 − 4 = 36 К = 36 °С.

Пример 21. В цилиндрическом сосуде поршень массой 75,0 кг и площадью сечения 50,0 см 2 начинает двигаться вверх. Давление газа под поршнем постоянно и равно 450 кПа, атмосферное давление составляет 100 кПа. Считая, что поршень движется без трения, определить модуль скорости поршня после прохождения им 3,75 м пути.

Решение . На рисунке показаны силы, действующие на поршень:

  • сила тяжести поршня M g → ;
  • сила атмосферного давления F → A ;
  • сила давления газа F → , действующая на поршень со стороны нагретого газа.

Под действием указанных сил, направленных вверх, поршень движется с ускорением a → :

F → + F → A + M g → = m a → ,

или в проекции на вертикальную ось —

где F — модуль силы давления газа под поршнем, F = pS ; p — давление газа; S — площадь поршня; Mg — модуль силы тяжести поршня; M — масса поршня; g — модуль ускорения свободного падения; a — модуль ускорения поршня.

Преобразуем записанное уравнение, выразив модуль ускорения и выполнив подстановку выражений для модулей сил:

a = F − F A − M g M = ( p − p A ) S M − g .

Скорость поршня, его ускорение и пройденный путь связаны между собой соотношением

где l — пройденный путь; v — модуль скорости поршня.

Выразим отсюда модуль скорости поршня:

и подставим в записанную формулу выражение для модуля ускорения:

v = 2 l ( ( p − p A ) S M − g ) .

v = 2 ⋅ 3,75 ( ( 450 − 100 ) ⋅ 10 3 ⋅ 50 ⋅ 10 − 4 75,0 − 10 ) ≈ 10 м/с.

После прохождения 3,75 м пути поршень приобретет скорость, приблизительно равную 10 м/с.

Источник

Adblock
detector