Меню

Давление гидростатическое давление сообщающиеся сосуды закон паскаля

1.5. Гидростатика

Давление. Сила давления

Давление равно отношению силы давления к площади. Это универсальное определение относится к твердым телам, жидкости, газу.

Способы увеличения давления: увеличить силу; уменьшить площадь. Давление в твердых телах передается в том же направлении, в котором действует сила. При решении задач (например, тело на наклонной плоскости) рассматриваются проекции сил — давление тела на плоскость и реакция опоры — на оси координат. Направление движения тела, при действии несколкиз сил, не совпадает с направлением силы давления на тело.

Гидростатика. Закон Паскаля: давление, производимое на жидкость или газ, передается жидкостью или газом во все стороны одинаково. Это связано с подвижностью молекул в жидком и газообразном состояниях.

Давление столба жидкости:

(ро же аш), где ρ — плотность жидкости, g — ускорение свободного падения.
h – высота столба жидкости или глубина, на котороей измеряется давление.

Сила давления: F = p S . Используя две формулы, находим силу давления на дно сосуда, на боковую грань аквариума и т.п. Экзаменационные задачи на эту тему простые; вычисляйте всё в системе СИ.

Гидростатический парадокс (следствие закона Паскаля): давление на дно сосуда определяется только высотой столба жидкости. И не только на дно, но и вообще на данной глуибне. Независимо от фомы сосуда и его размеров (см. формулу выше).

Поэтому в трех сосудах давление на дно одинаково.

Но сила давления разная — не путаем понятия!

Сообщающиеся сосуды

Сообщающиеся сосуды – сосуды, соединенные между собой (трубкой) или имеющие общее дно.

Уровень жидкости в сообщающихся сосудах располагается горизонтально, если:

• поверхности жидкости открыты;

• в сосуды налита однородная жидкость;

• ни один из сосудов не является капилляром;

• в жидкостях нет пузырьков с воздухом.

Давление столбов жидкости на одном горизонтальном уровне одинаково:

Гидравлический пресс – простой механизм, дающий выигрыш в силе. Он представляет собой сообщающиеся сосуды разного сечения. В основе его действия лежит закон Паскаля.

Внешняя сила, действующая на малый поршень, совершает работу. Давление в жидкости одинаково. (Высота столбов жидкостей в цилиндрах пресса меняется, но в задачах это не учитывается.
Такой пресс может работать в любом положении и в невесомости.)

Сила давления жидкости, действующая на большой поршень совершает полезную работу. Из меньшего цилиндра в больший перемещается некоторый объем жидкости — при этом перемещение меньшего поршня больше. Выигрыш в силе аналогичен действию рычага. Затрачиваемая и совершаемая работы одинаковы (если КПД 100%).

Источник

Давление в жидкости и газе. Гидростатическое давление. Закон Паскаля.

Давление в жидкости и газе.

Разделы механики, занимающиеся изучением жидкостей и газов, называются гидромеханикой и аэромеханикой. Они в свою очередь подразделяются на гидро- и аэростатику (изучающие равновесие жидкостей и газов) и гидро- и аэродинамику (изучающие движение жидкостей и газов). В настоящей главе излагается статика.

Читайте также:  При нагрузке снижается или поднимается давление

Жидкие и газообразные тела характерны тем, что не оказывают сопротивления сдвигу и поэтому способны изменять свою форму под воздействием сколь угодно малых сил. Для изменения объема жидкости или газа требуются, напротив, конечные внешние силы. При изменениях объема, происходящих в результате внешних воздействий, в жидкости и газе возникают упругие силы, в конце концов, уравновешивающие действие внешних сил. Упругие свойства жидкостей и газов проявляются в том, что отдельные части их действуют друг на друга или на соприкасающиеся с ними тела с силой, зависящей от степени сжатия жидкости или газа. Это воздействие характеризуют величиной, называемой давлением. Давление – это сила, действующая на единичную площадку:

(95)

Давление в газе определяется аналогичным образом.

Давление — скаляр, так как величина его в данной точке жидкости (или газа) не зависит от ориентации площадки Δs, к которой отнесено давление.

На первый взгляд может показаться удивительным, что пропорциональное векторной величине (силе) давление оказывается скалярной величиной. Однако следует иметь в виду, что площадка Δsтакже может рассматриваться как вектор, имеющий направление нормали к Δs, т. е. такое же направление, как и вектор силы, действующей на площадку. Следовательно, давление, по существу, равно отношению двух коллинеарных векторов Δf и Δs, а такая величина, как известно, представляет собой скаляр.

Единицами давления являются:

2) в системе СГС – дин/см2.

Кроме того, для измерения давления часто пользуются следующими внесистемными единицами:

1) технической атмосферой (обозначается ат), равной 1 кгс/см2;

2) физической или нормальной атмосферой (обозначается атм), равной давлению, оказываемому столбом ртути высотой 760 мм.

В физике часто измеряют давление в миллиметрах ртутного столба. Между различными единицами давления имеются следующие соотношения:

1 мм рт. ст. = 0,001 м * 13,6 * 103кг/м3 * 9,81 м/сек2= 133н/м2 = 133Па;

1 атм = 760 * 133= 1,01 • 105 н/м2 = 1,033 ат;

1 ат = 9,81 • 104 = 0,981 • 105 н/м2 = 0,968 атм.

Давление в жидкости

Если бы в жидкости (или газе) не было объемных сил, то условием равновесия было бы постоянство давления во всем объеме (закон Паскаля). Действительно, выделим в жидкости небольшой произвольно ориентированный цилиндрический объем высотой Δl и с основанием ΔS (рис. 35а). Если бы в точках, отстоящих друг от друга на Δl, давление отличалось на Δр, то вдоль оси цилиндра действовала бы сила Δp*ΔS, вследствие чего жидкость пришла бы в движение и равновесие было бы нарушено. Следовательно, при отсутствии объемных сил в состоянии равновесия в любом месте жидкости должно выполняться условие , откуда следует, что р = const.

Закон Паскаля — давление на поверхность жидкости, произведенное внешними силами, передается жидкостью одинаково во всех направлениях.

Читайте также:  Двухмесячный ребенок внутричерепное давление

Этот закон был открыт французским ученым Б. Паскалем в 1653 г. Его иногда называют основным законом гидростатики.

Закон Паскаля можно объяснить с точки зрения молекулярного строения вещества. В твердых телах молекулы образуют кристаллическую решетку и колеблются около своих положений равновесия. В жидкостях и газах молекулы обладают относительной свободой, они могут перемещаться друг относительно друга. Именно эта особенность позволяет давление, производимое на жидкость (или газ) передавать не только в направлении действия силы, но и во всех направлениях.

Закон Паскаля нашел широкое применение в современной технике. На законе Паскаля основана работа современных суперпрессов, которые позволяют создавать давления порядка 800 МПа. Также на этом законе построена работа всей гидроавтоматики, управляющей космическими кораблями, реактивными авиалайнерами, станками с числовым программным управлением, экскаваторами, самосвалами и т.д.

Гидростатическое давление жидкости

Гидростатическое давление — это давление в жидкости, обусловленное силой тяжести.

Гидростатическое давление внутри жидкости на любой глубине не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободного падения и глубины, на которой определяется давление:

В однородной покоящейся жидкости давления в точках, лежащих в одной горизонтальной плоскости (на одном уровне), одинаковы. Во всех случаях, приведенных на рис. 1, давление жидкости на дно сосудов одинаково.

Рис.1. Независимость гидростатического давления от формы сосуда

На данной глубине жидкость давит одинаково по всем направлениям, поэтому давление на стенку на данной глубине будет таким же, как и на горизонтальную площадку, расположенную на такой же глубине.

Полное давление в жидкости, налитой в сосуд, складывается из давления у поверхности жидкости и гидростатического давления:

Давление у поверхности жидкости часто равно атмосферному давлению.

Источник

Статика. Давление покоящейся жидкости на дно и стенки сосуда (гидростатическое давление).

Жидкости (и газы) передают по всем направлениям не только внешнее давление, но и то дав­ление, которое существует внутри них благодаря весу собственных частей.

Давление, оказываемое покоящейся жидкостью, называется гидроста­тическим.

Получим формулу для расчета гидростатического давления жидкости на произвольной глубине h (в окрестности точки A на рисунке).

Сила давления, действующая со стороны вышележащего узкого столба жидкости, может быть выражена двумя способами:

1) как произведение давления p в основании этого столба на площадь его сечения S:

2) как вес того же столба жидкости, т. е. произведение массы m жидкости на ускорение сво­бодного падения:

Масса жидкости может быть выражена через ее плотность p и объем V:

а объем — через высоту столба и площадь его поперечного сечения:

Подставляя в формулу (1.28) значение массы из (1.29) и объема из (1.30), получим:

Приравнивая выражения (1.27) и (1.31) для силы давления, получим:

Читайте также:  За что отвечает нижнее кровяное давление

Разделив обе части последнего равенства на площадь S, найдем давление жидкости на глубине h:

Это и есть формула гидростатического давления.

Гидростатическое давление на любой глубине внутри жидкости не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободно­го падения и глубины, на которой определяется давление.

Важно еще раз подчеркнуть, что по формуле гидростатического давления можно рассчитывать давление жидкости, налитой в сосуд любой формы, в том числе, давление на стенки сосуда, а так­же давление в любой точке жидкости, направленное снизу вверх, поскольку давление на одной и той же глубине одинаково по всем направлениям.

Гидростатический парадокс .

Гидростатический парадокс — явление, заключающееся в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления жидкости на дно сосуда.

В данном случае под словом «парадокс» понимают неожиданное явление, не соответствующее обычным представлениям.

Так, в расширяющихся кверху сосудах сила давления на дно меньше веса жидкости, а в сужа­ющихся — больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на разный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде.

Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости: p = pgh (формула гидростатического давления жидкости). А так как площадь дна у всех сосудов одинакова, то и сила, с которой жидкость давит на дно этих сосу­дов, одна и та же. Она равна весу вертикального столба ABCD жидкости: P = oghS, здесь S — площадь дна (хотя масса, а следовательно, и вес в этих сосудах различны).

Гидростатический парадокс объясняется законом Паскаля — способ­ностью жидкости передавать давление одинаково во всех направлениях.

Из формулы гидростатического давления следует, что одно и то же количество воды, находясь в разных сосудах, может оказывать разное дав­ление на дно. Поскольку это давление зависит от высоты столба жидкости, то в узких сосудах оно будет больше, чем в широких. Благодаря этому даже небольшим количеством воды можно создавать очень большое давле­ние. В 1648 г. это очень убедительно продемонстрировал Б. Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, подняв­шись на балкон второго этажа, вылил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давле­ние в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Источник

Adblock
detector