Меню

Давление и напряжение между пластинами конденсатора

Подробнее о процессах зарядки и разрядки конденсатора

Основной характеристикой конденсатора является его электрическая ёмкость С .

Под ёмкостью конденсатора понимается его способность накопить на своих обкладках и удержать на них электрический заряд.

Чем больший электрический заряд соберёт на себе конденсатор, тем больший заряд при разряде он отдаст во внешнюю электрическую цепь.

Ёмкость плоского конденсатора тем больше, чем больше площадь его пластин, чем меньше расстояние между ними и чем больше диэлектрическая проницаемость диэлектрика между его обкладками (объяснение дано в Занятии 53 ):

На практике конденсатор заряжают, присоединив его обкладки к полюсам источника постоянного напряжения.

Как происходит процесс зарядки конденсатора?

До зарядки каждая обкладка конденсатора имела одинаково е количество положительных и отрицательных зарядов, то есть не была заряжена.

Чтобы зарядить конденсатор надо, чтобы какое-то количество свободных электронов перешло с одной обкладки на другую. Поэтому обкладки и получают одинаковые по модулю, но противоположные по знаку заряды.

Эту роль выполняет источник постоянного напряжения.

Обкладка конденсатора, соединённая с положительным полюсом источника напряжения, получает заряд

а обкладка соединённая с отрицательным полюсом источника получает такой же по модулю отрицательный заряд

Источни к перемещает свободные электроны по внешней цепи (по проводам).

Это направленное движение электронов в проводах от «минуса» источника к «плюсу» есть электрический ток .

Этот ток называется «зарядным током» (заряжает конденсатор). Продолжительность зарядки конденсатора зависит от его ёмкости и внутреннего сопротивления источника напряжения.

Зарядный ток протекает (конденсатор заряжается) до тех пор , пока напряжение на конденсаторе (разность потенциалов между его обкладками) не станет равной ЭДС (электродвижущей силе) источника.

С увеличением напряжения на конденсаторе зарядный ток уменьшается.

При полной зарядке конденсатора (при равенстве напряжения и ЭДС источника) зарядный ток становится равным нулю, и дальше напряжение на конденсаторе остаётся постоянным.

Величина заряда на обкладке равна произведению ёмкости конденсатора на напряжение между его обкладками:

Если заряженный конденсатор отключить от источника и присоединить его к внешней цепи, то конденсатор станет разряжаться .

Электроны по проводам , отталкиваясь от отрицательно заряженной обкладки, станут двигаться к положительно заряженной обкладке конденсатора — по внешней цепи потечёт » разрядный ток».

Если во внешней цепи есть электрическая лампочка, то на короткое время будет наблюдаться вспышка света, что указывает на разрядный ток.

Процесс разрядки конденсатора идёт до тех пор, пока потенциалы обкладок не сравняются (пока напряжение между обкладками не станет равным нулю).

Про работу источника постоянного напряжения (или тока) будет идти речь далее в теме «Постоянный ток».

Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Сообщите друзьям о существовании этого канала.

Предыдущая запись : Нахождение заряда и напряжения на каждом конденсаторе при их последовательном соединении.

Следующая запись: Последовательное и параллельное соединения конденсаторов.

Ссылки на занятия до электростатики даны в Занятии 1 .

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .

Источник

Плоский воздушный конденсатор. Конструкция и принцип действия

Две плоские пластины, находящиеся параллельно между собой, с диэлектриком внутри, образуют плоский конденсатор. Это наиболее простая модель конденсатора, накапливающая энергию разноименного заряда. Если на пластины подать заряд, одинаковый по размеру, но различающийся по модулю, то поле, а точнее его напряженность между проводниками повысится в два раза. Отношение размера заряда одного проводника к разности потенциалов между пластинами – это электроемкость.

Применение

Во всех электронных и радиотехнических устройствах, кроме микросхем и транзисторов используются конденсаторы. В разных схемах конденсаторов присутствует разное количество. Нет таких схем, где бы они не использовались. Они выполняют различные задачи: являются емкостями в фильтрах, служат передающим элементом для сигнала каскадов усиления, входят в состав частотных фильтров, для выдержки временного диапазона, для подбора частоты колебаний в генерирующих устройствах.

Конструкция и принцип действия

Устройство конденсатора заключается в двух обкладках с диэлектриком между ними. На всех схемах они так и отображаются.

Читайте также:  Реле давления воды италтехника регулировка

S – площадь поверхности обкладок в м2, d – расстояние от обкладок, м, С – емкость, Ф, е – проницаемость диэлектрика. Все показатели выражены в системе СИ. Формула подходит плоскому конденсатору, помещают две пластины из металла с выводами, диэлектрик не нужен, так как им будет являться воздух.

Это показывает: емкость плоского конденсатора прямо зависит от площади пластин, и имеет обратную зависимость расстояния от пластин. Если геометрическая форма конденсатора иная, то формула емкости будет отличаться. Для вычисления кабеля. Но смысл зависимости остается таким же.

Пластины конденсаторов бывают и другой формы. Существуют металлобумажные конденсаторы с обкладками из алюминиевой фольги, которая свернута вместе с бумагой в клубок по форме корпуса.

Для повышения электрической прочности бумага конденсатора пропитывается специальным составом для изоляции, в основном это масло для трансформатора. Такое устройство дает возможность повысить емкость в разы. По такому же принципу сделаны конденсаторы других конструкций.

В формуле нет ограничений на размер пластин S и расстояние d. Если пластины отодвинуть далеко, и уменьшить их площадь, то малая емкость останется. Два соседних провода имеют электрическую емкость.

В технике высокой частоты такое свойство широко применяется. Конструкцию конденсаторов выполняют дорожками на печатном монтаже или скручивают два провода в полиэтилене. Простой провод, который называют «лапшой», имеет свою емкость. Чем длиннее провод, тем больше емкость.

Все кабели еще имеют сопротивление R, кроме емкости С. Свойства распределяются по длине кабеля, во время сигналов в виде импульсов являются цепочкой интеграции RС.

Импульс искажается специально. Для этого собрана схема. Емкость кабеля влияет на сигнал. На выходе появится измененный сигнал – «колокол», при коротком импульсе сигнал совсем пропадает.

Свойства материалов-диэлектриков

В формуле значение проницаемости диэлектрика находится в знаменателе, увеличение ведет к повышению емкости. Для воздуха, лавсана, фторопласта величина не отличается от вакуумного состояния. Существуют вещества-диэлектрики, у которых проницаемость больше. Конденсатор, залитый спиртом, повышает свою емкость в 20 раз.

Такие вещества кроме проницаемости имеют хорошую проводимость. Конденсатор с таким веществом держит заряд хуже, разряжается быстрее. Это свойство назвали током утечки. В качестве диэлектриков применяют материалы, позволяющие создавать нормальные токи утечки при большой удельной емкости. Поэтому существует много видов конденсаторов для различных условий применения.

Накопление энергии в конденсаторе

На схеме показан конденсатор с большой емкостью для медленного течения разряда. Можно взять лампочку от фонарика и проверить работу схемы. Такую лампочку можно найти в любом магазине электротоваров. Когда переключатель SA находится во включенном состоянии, то конденсатор получает заряд от батареи через резистор. Процесс изображен на рисунке.

Напряжение повышается по кривой — экспоненте. Ток отражается на графике в зеркальном виде, и имеет обратную зависимость от напряжения. Только в самом начале он подходит для приведенной формулы.

Через определенное время конденсатор получит заряд от источника до значения 4,5 вольт. Как можно вычислить время заряда конденсатора?

В формуле τ = R*C величины умножаются, итог получается в секундах. Это количество времени нужно для заряда уровня 36,8% от источника. Чтобы зарядить конденсатор полностью, нужно время = 5*т.

Если в формулу ставить емкость в мкФ, сопротивление в Ом, то время будет в микросекундах. Для нас удобнее секунды. На схеме емкость 2000 мкФ, сопротивление 500 Ом, время получается т = R * C = 500 * 2000 = 1000000 микросекунд. Это равнозначно одной секунде. В итоге, чтобы конденсатор получил полный заряд, необходимо время 5 секунд.

После этого времени переключатель переводим вправо, конденсатор разряжается по лампочке. Будет видна вспышка разряда конденсатора. Время, необходимое для разряда вычисляется величиной «т».

По схеме можно убедиться в вышеописанном утверждении.

При замыкании переключателя лампа вспыхивает — конденсатор получил заряд по лампочке. На графике видно, что в момент включения значение тока наибольшее, с течением заряда ток снижается до полного прекращения. При качественном конденсаторе и небольшой степенью саморазряда включение не выдаст вспышку лампы. Чтобы лампа снова вспыхнула, нужно разрядить конденсатор.

Читайте также:  Гомеопатическое средство для повышения давления

Любой проводник создает вокруг себя электрическое поле. Электрическое поле можно описать с помощью такой величины, как электрический потенциал. В каждой точке пространства потенциал имеет какое-то значение. Потенциал на бесконечном расстоянии равен нулю. Приближаемся мысленно от бесконечности к проводнику. Чтобы пробиться к проводнику, необходимо совершить работу. Эта работа идет на увеличение потенциальной энергии пробного заряда.

Максимальное значение потенциальная энергия достигнет тогда, когда мы вплотную подойдем к проводнику. После проникновения внутрь проводника, потенциальная энергия перестает меняться. Если мы разделим потенциальную энергию на величину пробного заряда, то получим электрический потенциал.

Потенциал проводника зависит от заряда. Если мы удвоим заряд проводника, то потенциал так же удвоится. Потенциал проводника прямо пропорционален заряду, который несет на себе этот проводник. Отношение заряда проводника к потенциалу является характеристикой проводника, называется электрической емкостью.

Чтобы понять это определение электроемкости, представим себе высоту жидкости в сосуде, имеющим широкое дно. Высота жидкости будет мала, то есть, потенциал мал. Если сосуд узкий и высокий, то такое же количество жидкости приведет к тому, что уровень жидкости будет высоким.

Применение емкостей в фильтрах

В фильтрах емкость устанавливается в конце выпрямителя, который сделан двухполупериодным.

Такие выпрямители применяются с малой мощностью. Достоинством выпрямителей с одним полупериодом является его простота. Он состоит из трансформатора и диода. Емкость конденсатора рассчитывается по формуле:

C=1000000*Po/2 * U * f * dU, где С – емкость в мкФ, Po – мощность, ватт, U — напряжение, вольт, f – частота, герц, dU амплитуда, В.

В числителе находится большое значение, это определяет емкость в мкФ. В знаменателе число 2 – это количество полупериодов, для однополупериодного – это 1.

Источник

Плоский конденсатор. Заряд и емкость конденсатора.

Наряду с резисторами одними из наиболее часто используемых электронных компонентов являются конденсаторы. И в этой статье мы разберемся, из чего они состоят, как работают и для чего применяются! Давайте, в первую очередь, рассмотрим устройство и принцип работы конденсаторов. А затем плавно перейдем к основным свойствам и характеристикам – заряду, энергии и, конечно же, емкости конденсатора. Как видите, нам сегодня предстоит изучить много интересных моментов 🙂

Плоский конденсатор.

Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

Такое устройство называется плоским конденсатором, а пластины – обкладками конденсатора. Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит.

Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

  • положительно заряженная пластина ( +q ) создает поле, напряженность которого равна E_
  • отрицательно заряженная пластина ( -q ) создает поле, напряженность которого равна E_

Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

Здесь \sigma – это поверхностная плотность заряда: \sigma = \frac , а \varepsilon – диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

Читайте также:  Какие симптомы при очень высоком давлении

Но направления векторов разные – внутри конденсатора вектора направлены в одну сторону, а вне – в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

А какая же будет величина напряженности вне конденсатора? А все просто – слева и справа от обкладок поля пластин компенсируют друг друга и результирующая напряженность равна 0 🙂

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника. Из-за этого на обкладке возникнет недостаток отрицательно заряженных частиц, и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора. В результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную разность потенциалов. Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока. После этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

В данном случае по цепи начнет протекать ток разряда конденсатора, а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Вот так и происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию.

Как видите, здесь нет ничего сложного 🙂

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора. Это физическая величина, которая определяется как отношение заряда конденсатора q одного из проводников к разности потенциалов между проводниками:

Емкость конденсатора изменяется в Фарадах, но величина 1 Ф является довольно большой, поэтому чаще всего емкость измерятся в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ). А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

Здесь у нас d – это расстояние между пластинами конденсатора, а q – заряд конденсатора. Подставим эту формулу в выражение для емкости:

Если в качестве диэлектрика у нас выступает воздух, то во всех формулах можно подставить \varepsilon = 1 .

Для запасенной энергии конденсатора справедливы следующие выражения:

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение. Это такая величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

Итак, мы сегодня рассмотрели основные свойства конденсаторов, их устройство и характеристики! Так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений и маркировку. Не пропустите!

Источник

Adblock
detector