Зависимость давления газа от объема
Убедимся в том, что молекулы газа действительно расположены достаточно далеко друг от друга, и поэтому газы хорошо сжимаемы.Возьмем шприц и расположим его поршень приблизительно посередине цилиндра. Отверстие шприца соединим с трубкой, второй конец которой наглухо закрыт. Таким образом, некоторая порция воздуха будет заключена в цилиндре шприца под поршнем и в трубке.В цилиндре под поршнем заключено некоторое количество воздуха. Теперь поставим на подвижный поршень шприца груз. Легко заметить, что поршень немного опустится. Это означает, что объем воздуха уменьшился Другими словами, газы легко сжимаются. Таким образом, между молекулами газа имеются достаточно большие промежутки. Помещение груза на поршень вызывает уменьшение объема газа. С другой стороны, после установки груза поршень, немного опустившись, останавливается в новом положении равновесия. Это означает, что сила давления воздуха на поршень увеличивается и снова уравновешивает возросший вес поршня с грузом . А поскольку площадь поршня при этом остается неизменной, мы приходим к важному заключению.
При уменьшении объема газа его давление увеличивается.
Будем помнить при этом, что масса газа и его температура в ходе опыта оставались неизменными. Объяснить зависимость давления от объема можно следующим образом. При увеличении объема газа расстояние между его молекулами увеличивается. Каждой молекуле теперь нужно пройти большее расстояние от одного удара со стенкой сосуда до другого. Средняя скорость движения молекул остается неизменной .Следовательно, молекулы газа реже ударяются о стенки сосуда, а это приводит к уменьшению давления газа. И, наоборот, при уменьшении объема газа его молекулы чаще ударяются о стенки сосуда, и давление газа увеличивается . При уменьшении объема газа расстояние между его молекулами уменьшается
Зависимость давления газа от температуры
В предыдущих опытах температура газа оставалась неизменной, и мы изучали изменение давления вследствие изменения объема газа. Теперь рассмотрим случай, когда объем газа остается постоянным, а температура газа изменяется. Масса при этом также остается неизменной. Создать такие условия можно, поместив некоторое количество газа в цилиндр с поршнем и закрепив поршень
Изменение температуры данной массы газа при неизменном объеме
Чем выше температура, тем быстрее движутся молекулы газа.
— во-первых, чаще происходят удары молекул о стенки сосуда;
— во-вторых, средняя сила удара каждой молекулы о стенку становится больше. Это приводит нас к еще одному важному заключению. При увеличении температуры газа его давление увеличивается. Будем помнить, что данное утверждение справедливо, если масса и объем газа в ходе изменения его температуры остаются неизменными.
Хранение и транспортировка газов.
Зависимость давления газа от объема и температуры часто используется в технике и в быту. Если требуется перевезти значительное количество газа из одного места в другое, или когда газы необходимо длительно хранить, их помещают в специальные прочные металлические сосуды. Эти сосуды выдерживают высокие давления, поэтому с помощью специальных насосов туда можно закачать значительные массы газа, которые в обычных условиях занимали бы в сотни раз больший объем. Поскольку давление газов в баллонах даже при комнатной температуре очень велико, их ни в коем случае нельзя нагревать или любым способом пытаться сделать в них отверстие даже после использования.
Газовые законы физики.
Физика реального мира в расчетах часто сводится к несколько упрощенным моделям. Наиболее применим такой подход к описанию поведения газов. Правила, установленные экспериментальным путем, были сведены различными исследователями в газовые законы физики и послужили появлению понятия «изопроцесс». Это такое прохождение эксперимента, при котором один параметр сохраняет постоянное значение. Газовые законы физики оперируют основными параметрами газа, точнее, его физического состояния. Температурой, занимаемым объемом и давлением. Все процессы, которые относятся к изменению одного или нескольких параметров и называются термодинамическими. Понятие изостатического процесса сводится к утверждению, что во время любого изменения состояния один из параметров остается неизменным. Это поведение так называемого «идеального газа», которое, с некоторыми оговорками, может быть применено к реальному веществу. Как отмечено выше, в реальности все несколько сложнее. Однако, с высокой достоверностью поведение газа при неизменной температуре характеризуется с помощью закона Бойля-Мариотта, который гласит:
Произведение объема на давление газа — величина постоянная. Это утверждение считается верным в том случае, когда температура не изменяется.
Этот процесс носит название «изотермический». При этом меняются два из трех исследуемых параметров. Физически все выглядит просто. Сожмите надутый шарик. Температуру можно считать неизменной. А в результате внутри шара повысится давление при уменьшении объема. Величина произведения двух параметров останется неизменной. Зная исходное значение хотя бы одного из них, можно легко узнать показатели второго. Еще одно правило в списке «газовые законы физики» — изменение объема газа и его температуры при одинаковом давлении. Это называется «изобарный процесс» и описывается с помощью закона Гей-Люсака. Соотношение объема и температуры газа неизменно. Это верно при условии постоянного значения давления в данной массе вещества. Физически тоже все просто. Если хоть раз заряжали газовую зажигалку или пользовались углекислотным огнетушителем, видели действие этого закона «вживую». Газ, выходящий из баллончика или раструба огнетушителя, быстро расширяется. Его температура резко падает. Можно обморозить кожу рук. В случае с огнетушителем — образуются целые хлопья углекислотного снега, когда газ под воздействием низкой температуры быстро переходит в твердое состояние из газообразного. Благодаря закону Гей-Люсака, можно легко узнать температуру газа, зная его объем в любой момент времени. Газовые законы физики описывают и поведение при условии неизменного занимаемого объема. Такой процесс называется изохорным и описывается законом Шарля, который гласит: При неизменном занимаемом объеме, отношение давления к температуре газа остается неизменным в любой момент времени.В реальности все знают правило: нельзя нагревать баллончики от освежителей воздуха и прочие сосуды, содержащие газ под давлением. Дело кончается взрывом. Происходит именно то, что описывает закон Шарля. Растет температура. Одновременно растет давление, так как объем не меняется. Происходит разрушение баллона в момент, когда показатели превышают допустимые. Так что, зная занимаемый объем и один из параметров, можно легко установить значение второго. Хотя газовые законы физики описывают поведение некой идеальной модели, их можно легко применять для предсказания поведения газа в реальных системах. Особенно в быту, изопроцессы могут легко объяснить, как работает холодильник, почему из баллончика освежителя вылетает холодная струя воздуха, из-за чего лопается камера или шарик, как работает разбрызгиватель и так далее.
Основы МКТ.
Молекулярно-кинетическая теория вещества— способ объяснения тепловых явлений, который связывает протекание тепловых явлений и процессов с особенностями внутреннего строения вещества и изучает причины, которые обусловливают тепловое движение. Эта теория получила признание лишь в XX в., хотя исходит из древнегреческого атомного учения о строении вещества.
Молекулярно-кинетическая теория объясняет тепловые явления особенностями движения и взаимодействия микрочастиц вещества
Молекулярно-кинетическая теория основывается на законах классической механики И. Ньютона, которые позволяют вывести уравнение движения микрочастиц. Тем не менее в связи с огромным их количеством (в 1 см 3 вещества находится около 10 23 молекул) невозможно ежесекундно с помощью законов классической механики однозначно описать движение каждой молекулы или атома. Поэтому для построения современной теории теплоты используют методы математической статистики, которые объясняют течение тепловых явлений на основании закономерностей поведения значительного количества микрочастиц.
Молекулярно-кинетическая теория построена на основании обобщенных уравнений движения огромного количества молекул.
Молекулярно-кинетическая теория объясняет тепловые явления с позиций представлений о внутреннем строении вещества, то есть выясняет их природу. Это более глубокая, хотя и более сложная теория, которая объясняет сущность тепловых явлений и обусловливает законы термодинамики.
Оба существующих подхода — термодинамический подход и молекулярно-кинетическая теория — научно доказаны и взаимно дополняют друг друга, а не противоречат друг другу. В связи с этим изучение тепловых явлений и процессов обычно рассматривается с позиций или молекулярной физики, или термодинамики, в зависимости от того, как проще изложить материал.
Термодинамический и молекулярно-кинетический подходы взаимно дополняют друг друга при объяснении тепловых явлений и процессов.
Дата добавления: 2018-02-15 ; просмотров: 3092 ;
Источник
При уменьшении объема газа его давление увеличивается.
Тема: Давление газов
1. Особенности молекулярного строения газов
Прежде чем непосредственно перейти к изучению давления газа, вспомним, какие особенности имеет расположение и движение молекул, из которых газ состоит.
Во-первых, молекулы газа движутся беспорядочно, хаотично.
Во-вторых, расстояния между молекулами достаточно большие по сравнению с размерами молекул.
В-третьих, вследствие большого расстояния между молекулами, силы притяжения между ними пренебрежимо малы, а силы отталкивания становятся заметными только при столкновениях молекул. Столкновения могут происходить как между самими молекулами, так и между молекулами и стенками сосуда (Рис. 1).
Рис. 1. Движение молекул газа в сосуде
Если взять воздушный шарик и немного его надуть, то он приобретет округлую форму, равномерно надуваясь со всех сторон (Рис. 2).
Рис. 2. Надутый шарик имеет округлую форму
Такая форма шарика объясняется тем, что молекулы газа оказывают давление не так, как молекулы твердых тел. Ведь молекулы газа движутся хаотично. Поэтому молекулы воздуха, которым наполнен шарик, ударяются о внутренние стенки оболочки шарика одинаково во всех направлениях. А значит, и давление воздуха не сосредотачивается на каких-то определенных участках оболочки, а равномерно распределяется по всей ее поверхности.
Итак, давление газа объясняется ударами его молекул о стенки сосуда, в котором находится газ.
2. Зависимость давления газа от объема
Убедимся в том, что молекулы газа действительно расположены достаточно далеко друг от друга, и поэтому газы хорошо сжимаемы.
Возьмем шприц и расположим его поршень приблизительно посередине цилиндра. Отверстие шприца соединим с трубкой, второй конец которой наглухо закрыт. Таким образом, некоторая порция воздуха будет заключена в цилиндре шприца под поршнем и в трубке (Рис. 3).
Рис. 3. В цилиндре под поршнем заключено некоторое количество воздуха
Теперь поставим на подвижный поршень шприца груз. Легко заметить, что поршень немного опустится. Это означает, что объем воздуха уменьшился (Рис. 4). Другими словами, газы (в нашем случае воздух) легко сжимаются. Таким образом, между молекулами газа имеются достаточно большие промежутки.
Рис. 4. Помещение груза на поршень вызывает уменьшение объема газа
С другой стороны, после установки груза поршень, немного опустившись, останавливается в новом положении равновесия. Это означает, что сила давления воздуха на поршень (направленная вверх) увеличивается и снова уравновешивает возросший вес поршня с грузом (направленный вниз). А поскольку площадь поршня при этом остается неизменной, мы приходим к важному заключению.
При уменьшении объема газа его давление увеличивается.
Будем помнить при этом, что масса газа и его температура в ходе опыта оставались неизменными.
Объяснить зависимость давления от объема можно следующим образом. При увеличении объема газа расстояние между его молекулами увеличивается. Каждой молекуле теперь нужно пройти большее расстояние от одного удара со стенкой сосуда до другого. Средняя скорость движения молекул остается неизменной (если температура газа не меняется). Следовательно, молекулы газа реже ударяются о стенки сосуда, а это приводит к уменьшению давления газа. И, наоборот, при уменьшении объема газа его молекулы чаще ударяются о стенки сосуда, и давление газа увеличивается (Рис. 5).
Рис. 5. При уменьшении объема газа расстояние между его молекулами уменьшается
3. Зависимость давления газа от температуры
В предыдущих опытах температура газа оставалась неизменной, и мы изучали изменение давления вследствие изменения объема газа. Теперь рассмотрим случай, когда объем газа остается постоянным, а температура газа изменяется. Масса при этом также остается неизменной. Создать такие условия можно, поместив некоторое количество газа в цилиндр с поршнем и закрепив поршень (Рис. 6).
Рис. 6. Изменение температуры данной массы газа при неизменном объеме
Чем выше температура, тем быстрее движутся молекулы газа.
— во-первых, чаще происходят удары молекул о стенки сосуда;
— во-вторых, средняя сила удара каждой молекулы о стенку становится больше.
Это приводит нас к еще одному важному заключению.
Источник