Меню

Давление некоторой массы идеального газа увеличили изотермически вдвое

32. Работа газа. Первое начало термодинамики: задачи с ответами без решений

(Все задачи по молекулярно-кинетической теории и ответы к ним находятся в zip-архиве (290 кб), который можно скачать и открыть на своем компьютере. Попробуйте решить задачи самостоятельно и только потом сравнивать свои ответы с нашими. Желаем успехов!)

32.1. Какова внутренняя энергия одноатомного газа, занимающего при температуре T объем V, если концентрация молекул n? [ U = (3/2)nkTV ]

32.2. В цилиндре с площадью основания S = 100 см 2 находится газ при температуре t = 27 °С. На высоте h = 30 см от дна цилиндра расположен поршень массой m = 60 кг. Какую работу совершит газ, если его температуру медленно повысить на Δt = 50 °С? Атмосферное давление po = 10 5 Па. [ A ≅ 79.4 Дж ]

32.3. Газообразный водород массой m = 0,1 кг совершает круговой процесс 1 – 2 – 3 – 1 (рис.). Найдите работу газа на участке 1 – 2, если Т1 = 300 K, a V2 = 3V1. [ A = 2.5×10 5 Дж ]

32.4. Идеальный газ массой m = 20 г и молярной массой M = 28 г/моль совершает замкнутый процесс (рис.). Температура в точках 1 и 2 равна: T1 = 300 К; Т2 = 496 К. Найти работу газа за цикл. [ A = 1162 Дж ]

32.5. Давление ν молей идеального газа связано с температурой по закону: Т = αp 2 (α = const). Найти работу газа при увеличении объема от значения V1 до значения V2. Выделяется или поглощается при этом тепло? [смотрите ответ в общем файле темы]

32.6. В цилиндре под невесомым поршнем находится газ. Поршень связан с дном цилиндра пружиной. Газ расширяется из состояния с параметрами p1, V1 в состояние p2, V2. Определить работу газа. [смотрите ответ в общем файле темы]

32.7. ν молей идеального газа помещены в герметическую упругую оболочку. Упругость оболочки такова, что квадрат объема пропорционален температуре. На сколько изменится энергия оболочки, если газ нагреть от температуры T1 до температуры T2? Какова теплоемкость системы? Теплоемкостью оболочки и внешним давлением пренебречь. [смотрите ответ в общем файле темы]

32.8. При изотермическом процессе газ совершил работу 1000 Дж. На сколько увеличится внутренняя энергия этого газа, если ему сообщить количество теплоты вдвое больше, чем в первом случае, а процесс проводить изохорически? [2000 Дж]

32.9. Найти количество теплоты, сообщенное газу в процессе 1 – 2 (рис.). [ Q = 3pV/4 ]

32.10. Один моль идеального газа совершает процесс 1 – 2 – 3 (рис.). Известны: давление p1, p2 и объем V1, V2. Найти поглощенное газом в этом процессе количество теплоты. [смотрите ответ в общем файле темы]

32.11. Один моль идеального газа нагревают сначала изотермически. При этом он совершает работу 10 Дж. Затем его нагревают изобарически, сообщая ему то же количество теплоты. Какую работу совершает газ во втором случае? [4 Дж]

32.12. Водород массой m = 1 кг при начальной температуре T1 = 300 K охлаждают изохорически так, что его давление падает в η = 3 раза. Затем газ расширяют при постоянном давлении до начальной температуры. Найти произведенную газом работу. [ A = 8.3×10 5 Дж ]

32.13. Один моль идеального газа переводят из начального состояния 1 в конечное 4 в процессе, представленном на рис. Какое количество теплоты подвели к газу, если ΔT = Т4 − T1 = 100 K? [ Q = 415 Дж ]

32.14. В вертикальном цилиндре под тяжелым поршнем находится газ при температуре T. Масса поршня m, его площадь S, объем газа V. Для повышения температуры газа на ΔT ему сообщили количество теплоты Q. Найдите изменение внутренней энергии газа. Атмосферное давление po, трения нет. [смотрите ответ в общем файле темы]

32.15. Для нагревания некоторого количества газа с молярной массой M = 28 г/моль на ΔT = 14 K при p = const требуется количество теплоты Q = 10 Дж. Чтобы охладить его на ту же ΔT при V = const требуется отнять Q = 8 Дж. Определить массу газа. [ m ≅ 0.48 г ]

32.16. В вертикальном цилиндре на высоте h от дна находится поршень. Под поршнем — идеальный газ. На поршень положили гирю массой m. После установления теплового равновесия с окружающей средой цилиндр теплоизолировали и газ начали нагревать. Какое количество теплоты следует подвести к газу, чтобы поршень вернулся в исходное положение. Трения нет. [ Q = 5mgh/2 ]

32.17. В вертикальном цилиндре под невесомым поршнем находится гелий. Объем гелия Vo, а давление 3po (po – атмосферное давление). Поршень удерживается сверху упорами (рис.). Какое количество теплоты необходимо отнять у гелия чтобы его объем стал Vo/2. Трения нет. [ Q = 17poVo/4 ]

32.18. В цилиндре под поршнем находится ν = 0,5 молей воздуха при температуре T = 300 K. Во сколько раз увеличится объем воздуха при сообщении ему количества теплоты Q = 13,2 кДж? Молярная теплоемкость воздуха при постоянном объеме cV = 21 Дж/(моль • К). [ n = 4 ]

32.19. Теплоизолированный сосуд объемом V = 22,4 л разделен пополам теплопроводящей перегородкой. В первую половину сосуда вводят m1 = 11,2 г азота при температуре t1 = 20 °С, а во вторую – m2 = 16,8 г азота при t2 = 15 °С. Какое давление установится в первой половине после выравнивания температур? Система теплоизолирована. [ p ≅ 86 кПа ]

32.20. Баллон емкостью V1 содержащий ν1 молей газа при температуре T1, соединяют с баллоном емкостью V2, содержащим ν2 молей того же газа при температуре T2. Какие установятся давление и температура. Система теплоизолирована. [смотрите ответ в общем файле темы]

32.21. Над одним молем идеального газа совершается процесс из двух изохор и двух изобар (рис.). Температуры в точках 1 и 3 равны T1 и T3. Определить работу газа за цикл, если точки 2 и 4 лежат на одной изотерме. [смотрите ответ в общем файле темы]

32.22. Моль идеального газа совершает цикл из двух изохор и двух изобар (рис.). Работа газа за цикл A = 200 Дж. Максимальная и минимальная температуры в цикле отличаются на ΔT = 60 К. Отношение давлений на изобарах равно 2. Найти отношение объемов на изохорах. [ ≅ 3 ]

32.23. Внутри цилиндрического сосуда под поршнем массы m находится идеальный газ под давлением p. Площадь поршня S, внешнего давления нет. Вначале поршень удерживается на расстоянии h1 от дна сосуда (рис.). Поршень отпустили. После прекращения колебаний поршень остановился. На каком расстоянии от дна он остановился? Трения нет. Тепловыми потерями и теплоемкостью поршня и цилиндра пренебречь. [смотрите ответ в общем файле темы]

Читайте также:  Головная боль и рвота при пониженном давлении

32.24. В гладкой трубке между двумя поршнями массой m находится один моль идеального газа. В начальный момент скорости поршней направлены в одну сторону и равны v и 3v (рис.), а температура газа To. Найти максимальную температуру газа. Внешнего давления и трения нет. [смотрите ответ в общем файле темы]

32.25. В горизонтальном неподвижном цилиндре, закрытом поршнем массы m, находится один моль идеального газа. Газ нагревают. При этом поршень, двигаясь равномерно, приобретает скорость v. Найдите количество теплоты, сообщенное газу. Теплоемкостью сосуда и поршня, а также внешним давлением пренебречь. [ Q = 5mv 2 /4 ]

32.26. Сосуд, содержащий некоторое количество азота, движется со скоростью v = 100 м/с. На сколько изменится температура азота, если сосуд внезапно остановить? [ ΔT = Mv 2 /(5R) ]

32.27. В гладкой горизонтальной трубе находятся два поршня массами m и 3m. Между поршнями идеальный газ при давлении po. Объем между поршнями Vo (рис.). Первоначально поршни неподвижны, затем их отпускают. Найти максимальные скорости поршней. Труба длинная, внешнего давления нет. [смотрите ответ в общем файле темы]

32.28. Один моль идеального газа изобарически нагрели на ΔT = 72 K, сообщив ему количество теплоты Q = 1,6 кДж. Найти величину γ = cp/cV. [ γ = 1.6 ]

32.29. Вычислить γ = cp/cV для газовой смеси, состоящей из ν1 = 2 молей кислорода и ν2 = 3 молей углекислого газа. [ γ ≅ 1,6]

32.30. Теплоизолированный небольшой сосуд откачан до глубокого вакуума. Окружающая сосуд атмосфера состоит из идеального одноатомного газа при температуре 300 К. В сосуде открывается небольшое отверстие и он заполняется газом. Какую температуру будет иметь газ в сосуде сразу после заполнения? [500 K]

32.31. Определить скорость истечения гелия из теплоизолированного сосуда в вакуум через малое отверстие. Температура газа в сосуде T = 1000 K, скоростью газа в сосуде пренебречь. [ v ≅ 3.3×10 3 м/с]

32.32. Горизонтальный цилиндрический сосуд разделен подвижным поршнем. Справа от поршня одноатомный идеальный газ с параметрами: po; Vo; To, слева – вакуум (рис.). Поршень соединен с левым торцом цилиндра пружиной, собственная длина которой равна длине сосуда. Определить теплоемкость системы в этом состоянии. Теплоемкостью поршня и цилиндра пренебречь. Трения нет. [ C = 2poVo/To ]

32.33. Над идеальным двухатомным газом совершают процесс p = αV (α = const). Какова молярная теплоемкость газа в этом процессе? [c = 3R]

32.34. С одним молем идеального одноатомного газа проводят процесс: p = po — αV, где α – известная константа. Определить, при каких значениях объема газ получает тепло, а при каких отдает. Объем в процессе возрастает.

32.35. В процессе расширения азота его объем увеличился на 2 %, а давление уменьшилось на 1 %. Какая часть теплоты, полученной азотом, была превращена в работу? Удельная теплоемкость азота при постоянном объеме cV = 745 Дж/(кг • К). [ ≅ 0.44 ]

32.36. В цилиндрическом горизонтальном сосуде находится гладкий подвижный поршень. Слева и справа от поршня находится по одному молю идеального одноатомного газа. Температура газа в левой части поддерживается постоянной, а газ в правой части нагревается. Найдите теплоемкость газа в правой части в момент, когда поршень делит сосуд пополам. [C = 2R]

32.37. В вертикальном цилиндре под поршнем площадью S и массой m находится 1 моль идеального одноатомного газа. Под поршнем включается нагреватель, мощность которого N. Определите установившуюся скорость движения поршня. Атмосферное давление po, газ теплоизолирован, трения нет. [смотрите ответ в общем файле темы]

32.38. Мыльный пузырь содержит ν молей идеального одноатомного газа. Определить теплоемкость этой системы. Атмосферное давление не учитывать. [ C = 3νR ]

32.39. По трубе, в которой работает электрический нагреватель, пропускают газ (рис.). Определить мощность нагревателя, если разность температур газа на выходе и на входе равна ΔТ = 5 К, а массовый расход газа μ = 720 кг/ч. Молярная теплоемкость газа при постоянном давлении cp = 29,3 Дж/(моль • К), его молярная масса M = 29 г/моль. [ N ≅ 1.01 кВт ]

32.40. Из небольшого отверстия в баллоне с сжатым гелием вытекает струя гелия со скоростью v. Найдите разность температур гелия в баллоне и в струе. Давление в струе считать равным внешнему давлению, скоростью газа в баллоне пренебречь. [ ΔT = Mv 2 /(5R) ]

32.41. Одинаковые сообщающиеся сосуды закрыты поршнями массой m = 5 кг и M = 10 кг и соединены тонкой трубкой с краном (рис.). Под поршнями идеальный одноатомный одинаковый газ. Сначала кран закрыт, поршень M находится на высоте H = 10 см от дна, а температура одинакова. На какую высоту передвинется поршень m после открытия крана? Система теплоизолирована, атмосферного давления нет. [ 20 см ]

32.42. В горизонтальной открытой трубе сечением S без трения могут двигаться два поршня массами m и M. Начальное расстояние между поршнями l, атмосферное давление po. При закрепленных поршнях воздух между ними откачали, затем поршни отпустили. Какое количество теплоты выделится в результате их абсолютно неупругого столкновения? [ Q = poSl ]

32.43. Один моль идеального газа совершает цикл 1 – 2 – 3 – 1, состоящий из изохоры 1 – 2 и двух процессов, представляемых отрезками прямых в координатах p – V (рис.). Определить работу газа за цикл, если известны: температура T1, Т2 = 4Т1, а также Т2 = Т3. Линия 3 – 1 проходит через начало координат. [ A = 3RT1/2 ]

Источник

§ 6. Изотермический, изобарный и изохорный процессы

Сайт: Профильное обучение
Курс: Физика. 10 класс
Книга: § 6. Изотермический, изобарный и изохорный процессы
Напечатано:: Гость
Дата: Четверг, 15 Октябрь 2020, 17:43

Оглавление

Свойство газов существенно изменять предоставленный им объём широко используют в тепловых двигателях. Анализируя процессы, происходящие с газом в этих устройствах, важно знать, каким законам подчиняются газы и каковы условия применимости этих законов.

Процессы в газах часто происходят так, что изменяются только два параметра из пяти (p, V, T, m, M). Если при постоянных массе и молярной массе ещё один из макропараметров (p, V, T), входящих в уравнение состояния идеального газа, не изменяется, то такие процессы называют изопроцессами.

Изотермический процесс. Процесс изменения состояния физической системы при постоянной температуре (T = const) называют изотермическим.

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то из уравнения Клапейрона–Менделеева следует:

Читайте также:  Лампа ртутная высокого давления дроссельная

Давление данной массы газа при постоянных молярной массе и температуре обратно пропорционально его объёму.

Это утверждение называют законом Бойля–Мариотта.

Справедливость закона Бойля–Мариотта можно продемонстрировать экспериментально, используя установку, представленную на рисунке 18 в § 5.

Если медленно изменять объём газа, находящегося в сосуде, то вследствие теплообмена с окружающей средой можно поддерживать температуру газа в сосуде практически постоянной. При этом уменьшение объёма газа при вращении винта 3 повлечёт за собой увеличение его давления и некоторое незначительное увеличение температуры. И наоборот, увеличение объёма приведёт к уменьшению давления и некоторому незначительному уменьшению температуры газа * .

1. Почему пузырьки воздуха, находящиеся в жидкости, поднимаясь вверх, увеличиваются в объёме?

2. Если, не отрываясь, выпить из пластиковой бутылки газированную воду, то можно обнаружить, что бутылка деформируется. Почему?

График изотермического процесса, совершаемого идеальным газом, в координатах (p, V) представляет собой гиперболу (рис. 22). В физике такую кривую называют изотермой. Разным значениям температуры газа соответствуют разные изотермы. Согласно соотношениям (6.1) для одинаковых объёмов газов с одинаковыми количествами вещества и разными температурами чем больше давление, тем выше температура (рис. 22).

Многочисленные опыты показали, что исследованные газы подчиняются закону Бойля–Мариотта тем точнее, чем меньше их плотность. При значительном увеличении давления газа этот закон перестаёт выполняться.

Изобразите графики изотермического процесса в координатах (p, T) и (V, T).

Интересно знать

Лёгкие расположены в грудной клетке, объём которой при дыхании периодически изменяется благодаря работе межрёберных мышц и диафрагмы. К огда грудная клетка расширяется, давление воздуха в лёгких становится меньше атмосферного, и воздух через воздухоносные пути устремляется в лёгкие — происходит вдох. При выдохе объём грудной клетки уменьшается, что вызывает уменьшение объёма лёгких. Давление воздуха в них становится выше атмосферного, и воздух из лёгких устремляется в окружающую среду.

* Незначительное изменение температуры газа принципиально необходимо для теплообмена с термостатом — передача тепла возможна только при разных температурах тел. ↑

Изобарный процесс. Процесс изменения состояния газа при постоянном давлении (p = const) называют изобарным.

В 1802 г. французский учёный Жозеф Гей-Люссак (1778–1850) рассмотрел этот процесс для воздуха, водорода, кислорода и азота.

Если при переходе из начального состояния в конечное масса и молярная масса газа не изменяются, то объём газа, как следует из уравнения Клапейрона–Менделеева:

Объём данной массы газа при постоянных молярной массе и давлении прямо пропорционален абсолютной температуре.

Это утверждение называют законом Гей-Люссака.

Справедливость закона Гей-Люссака можно продемонстрировать экспериментально, используя установку, представленную на рисунке 23. Жидкость в сосуде находится в тепловом равновесии с тонкой трубкой, заполненной воздухом, запертым капелькой масла. При увеличении температуры жидкости объём воздуха, находящегося в трубке под капелькой масла, возрастает и капелька движется вверх. При уменьшении температуры объём воздуха уменьшается — и капелька движется вниз.

Можно ли считать расширение газа при медленном нагревании его в цилиндре с подвижным поршнем изобарным процессом?

T, то в координатах (V, T) график изобарного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 24). Эту линию называют изобарой.

Изобара реальных газов не может быть продлена до нулевого значения температуры (на графике пунктирная линия), потому что при низких температурах все газы существенно отличаются от модели «идеальный газ» и при дальнейшем уменьшении температуры превращаются в жидкости.

В одних и тех же координатах (V, T) можно построить несколько изобар, которые соответствуют разным давлениям данной массы идеального газа при неизменной молярной массе. Анализ соотношений (6.2) позволяет сделать вывод, что большему давлению соответствует меньший наклон изобары к оси температур (см. рис. 24).

Изобразите графики изобарного процесса в координатах (p, V) и (p, T).

Изохорный процесс. Процесс изменения состояния газа при постоянном объёме (V = const) называют изохорным.

Впервые этот процесс рассмотрел в 1787 г. французский учёный Жак Шарль (1746–1823) * .

Если при переходе из начального состояния в конечное масса и молярная масса идеального газа не изменяются, то давление газа, как следует из уравнения Клапейрона–Менделеева:

Давление данной массы газа при постоянных молярной массе и объёме прямо пропорционально абсолютной температуре.

Это утверждение называют законом Шарля .

Справедливость закона Шарля можно продемонстрировать экспериментально, используя установку, представленную на рисунке 25. Колба, наполненная воздухом и соединённая с манометром, находится в тепловом равновесии с жидкостью в сосуде. При увеличении температуры жидкости давление воздуха в колбе возрастает, а при уменьшении температуры — давление воздуха уменьшается.

Идеальный газ определённой массы изохорно охлаждают так, что его температура уменьшается от t1 = 327 °С до t2 = 7 °С. Во сколько раз уменьшается давление газа?

В координатах (p, T) график изохорного процесса, совершаемого идеальным газом, представляет собой прямую линию, продолжение которой проходит через начало координат (рис. 26). Эту линию называют изохорой.

Как и в случае изобарного процесса, изохора реальных газов не может быть продлена до нулевого значения температуры.

В одних и тех же координатах (p, T) можно построить несколько изохор, соответствующих разным объёмам данной массы газа при неизменной молярной массе. Анализ соотношений (6.3) показывает, что большему объёму соответствует меньший наклон изохоры к оси температур (см. рис. 26).

Изобразите графики изохорного процесса в координатах (p, V) и (V, T).

Читайте также:  Минимойки высокого давления стационарный

Давление данной массы идеального газа при неизменных молярной массе и температуре обратно пропорционально его объёму

Объём данной массы идеального газа при неизменных молярной массе и давлении прямо пропорционален его абсолютной температуре

Давление данной массы идеального газа при неизменных молярной массе и объёме прямо пропорционально его абсолютной температуре

Процесс изменения состояния идеального газа данной массы при неизменной молярной массе
изотермический изобарный изохорный
При постоянном макроскопическом параметре
Уравнение процесса , , ,
Формулировка закона

1. Как связаны давление и объём идеального газа при изотермическом процессе?

2. Как связаны объём и абсолютная температура идеального газа при изобарном процессе?

3. Как связаны давление и абсолютная температура идеального газа при изохорном процессе?

4. При выполнении каких условий справедлив каждый из законов изопроцессов в реальном газе?

5. Объём идеального газа определённой массы и неизменного химического состава изобарно увеличили в b = 1,5 раза, а затем давление газа изохорно уменьшили в c = 3 раза.

а) Как изменилась абсолютная температура газа в результате первого процесса?

б) Как изменилась абсолютная температура газа в результате второго процесса?

в) Во сколько раз начальная абсолютная температура газа отличается от его конечной температуры?

6. На рисунке 27 представлен график трёх процессов изменения состояния идеального газа определённой массы и неизменного химического состава.

а) Какому процессу соответствует участок 1 2 графика? Во сколько раз увеличилось давление газа в этом процессе?

б) Какому процессу соответствует участок 2 3 графика? Во сколько раз увеличились объём и абсолютная температура газа в этом процессе?

в) Какому процессу соответствует участок 3 4 графика? Как и во сколько раз изменились объём и давление газа в этом процессе?

г) Во сколько раз следует уменьшить температуру газа, чтобы изохорно перевести газ из состояния 4 в состояние 2?

* Несмотря на то что Шарль не опубликовал результаты своих исследований, история физики отдаёт приоритет открытия ему. ↑

Пример 1. На рисунке 28 представлен график трёх процессов изменения состояния некоторой массы идеального газа. Как изменялись параметры газа на участках 1 2, 2 3, 3 1? Изобразите эти процессы в координатах (p, V) и (p, T).

Решение. На участке 1 2 объём газа прямо пропорционален абсолютной температуре, следовательно, процесс перехода газа из состояния 1 в состояние 2 является изобарным. Из графика следует, что в состоянии 2 температура и объём газа больше в 4 раза, чем в состоянии 1. Следовательно, в процессе изобарного расширения некоторой массы газа из состояния 1 в состояние 2 температура и объём газа увеличились. Это можно записать таким образом:

переход , , , ,
происходит изобарное нагревание газа.

В процессе перехода газа из состояния 2 в состояние 3 остаётся постоянным объём (процесс изохорный), а температура газа уменьшается в 4 раза. Из соотношения (6.3) следует, что при изохорном охлаждении давление газа уменьшается пропорционально его абсолютной температуре. Поэтому можно записать:

переход , , ,
происходит изохорное охлаждение газа.

Процесс перехода газа из состояния 3 в состояние 1 — изотермический. При этом объём газа уменьшается в 4 раза, что влечёт за собой, согласно закону Бойля–Мариотта, увеличение давления газа в 4 раза:

переход , ,
происходит изотермическое сжатие газа.

Опираясь на сделанные выводы, представим все три процесса в координатах (p, V) и (p, T) (рис. 29, а, б).

Пример 2. При изотермическом расширении идеального газа определённой массы его объём увеличился от V1 = 2,0 л до V2 = 5,0 л, а давление уменьшилось на Δp = –15 кПа. Определите первоначальное давление газа.

Решение: Так как температура и масса газа не изменяются, то его начальное и конечное состояния связаны законом Бойля–Мариотта, т. е. . С учётом того, что , получим:

Пример 3. В двух сосудах вместимостью V1 = 20 л и V2 = 30 л находятся химически не реагирующие идеальные газы, давления которых p1 = 1,0 МПа и p2 = 0,40 МПа соответственно. Определите давление газов в сосудах после того, как их соединили тонкой короткой трубкой. Температура газов до и после соединения сосудов одинаковая.

Решение: Давление смеси газов равно сумме парциальных давлений (закон Дальтона): . Найдём парциальное давление каждого газа после соединения сосудов. Так как температура и массы газов не изменяются, то начальное и конечное состояния каждого газа связаны законом Бойля–Мариотта, т. е.

Следовательно, парциальные давления газов после соединения сосудов: , . Тогда .

Упражнение 5

1. При изобарном увеличении температуры идеального газа, находящегося в герметично закрытом цилиндре, на ΔT = 60,0 К его объём увеличился в β = 1,21 раза. Определите начальную абсолютную температуру газа.

2. Изобразите графически процесс изобарного охлаждения определённой массы идеального газа в координатах (p, T); (V, T); (V, p).

3. Идеальный газ определённой массы сначала изобарно расширили, а затем изотермически сжали до первоначального объёма. Изобразите графически эти процессы в координатах (V, T); (p, V).

4. На рисунке 30 представлен график изменения состояния определённой массы идеального газа. (Переход 3 1 осуществляется при неизменной температуре.) Изобразите графически этот процесс в координатах (T, V) и (p, T).

5. При температуре t1 = –3,0 °С манометр на баллоне со сжатым кислородом показывал давление p1 = 1,8 · 10 6 Па, а при температуре t2 = 27 °С — давление p2 = 2,0 · 10 6 Па. Определите, была ли утечка газа из баллона.

6. В герметичном сосуде, заполненном воздухом ( ), лежит полый металлический шарик, диаметр которого d = 4,0 см , а масса m = 0,64 г . Определите минимальное значение давления воздуха, накачиваемого в сосуд, при котором бы шарик поднялся вверх, если температура t = 17 °С остаётся постоянной.

7. Идеальный газ, давление которого p1 = 4 · 10 5 Па , занимал объём V1 = 2 л . Сначала газ изотермически расширили до объёма V2 = 8 л , а затем изохорно нагрели, в результате чего его абсолютная температура увеличилась в α = 3 раза. Определите давление р3 газа в конце процесса, если при переходе из начального состояния в конечное масса газа оставалась неизменной.

Источник

Adblock
detector