Элементы гидростатики
Основным отличием жидкостей от твердых (упругих) тел является способность легко изменять свою форму. Части жидкости могут свободно сдвигаться, скользя друг относительно друга. Поэтому жидкость принимает форму сосуда, в который она налита. В жидкость, как и в газообразную среду, можно погружать твердые тела. В отличие от газов жидкости практически несжимаемы.
На тело, погруженное в жидкость или газ, действуют силы, распределенные по поверхности тела. Для описания таких распределенных сил вводится новая физическая величина – давление.
Давление определяется как отношение модуля силы действующей перпендикулярно поверхности, к площади S этой поверхности:
В системе СИ давление измеряется в паскалях (Па):
Часто используются внесистемные единицы: нормальная атмосфера (атм) и миллиметр ртутного столба (мм Hg):
1 атм = 101325 Па = 760 мм Hg. |
Французский ученый Блез Паскаль в середине XVII века эмпирически установил закон, названный законом Паскаля:
Давление в жидкости или газе передается во всех направлениях одинаково и не зависит от ориентации площадки, на которую оно действует.
Для иллюстрации закона Паскаля на рис. 1.15.1 изображена небольшая прямоугольная призма, погруженная в жидкость. Если предположить, что плотность материала призмы равна плотности жидкости, то призма должна находиться в жидкости в состоянии безразличного равновесия. Это означает, что силы давления, действующие на грани призмы, должны быть уравновешены. Это произойдет только в том случае, если давления, т. е. силы, действующие на единицу площади поверхности каждой грани, одинаковы: p1 = p2 = p3 = p.
Рисунок 1.15.1. Закон Паскаля: p1 = p2 = p3 = p |
Давление жидкости на дно или боковые стенки сосуда зависит от высоты столба жидкости. Сила давления на дно цилиндрического сосуда высоты h и площади основания S равна весу столба жидкости mg, где m = ρghS – масса жидкости в сосуде, ρ – плотность жидкости. Следовательно
Такое же давление на глубине h в соответствии с законом Паскаля жидкость оказывает и на боковые стенки сосуда. Давление столба жидкости ρgh называют гидростатическим давлением.
Если жидкость находится в цилиндре под поршнем (рис. 1.15.2), то действуя на поршень некоторой внешней силой можно создавать в жидкости дополнительное давление p = F / S, где S – площадь поршня.
Таким образом, полное давление в жидкости на глубине h можно записать в виде:
Если на рис. 1.15.2 поршень убрать, то давление на поверхность жидкости будет равно атмосферному давлению: p = pатм.
Рисунок 1.15.2. Зависимость давления от высоты столба жидкости |
Из-за разности давлений в жидкости на разных уровнях возникает выталкивающая или архимедова сила
Рис. 1.15.3 поясняет появление архимедовой силы. В жидкость погружено тело в виде прямоугольного параллелепипеда высотой h и площадью основания S. Разность давлений на нижнюю и верхнюю грани есть:
Поэтому выталкивающая сила будет направлена вверх, и ее модуль равен
где V – объем вытесненной телом жидкости, а ρV – ее масса.
Архимедова сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом. Это утверждение, называемое законом Архимеда, справедливо для тел любой формы. (Тело впернутое в воду выпирает на свободу силой выпертой воды телом впернутым туды! так легче запомнить)
Рисунок 1.15.3. Архимедова сила. FА = F2 – F1 = S(p2 – p1) = ρgSh, F1 = p1S, F2 = p2S |
Из закона Архимеда вытекает, что если средняя плотность тела ρт больше плотности жидкости (или газа) ρ, тело будет опускаться на дно. Если же ρт > S1, то F2 >> F1. Устройства такого рода называют гидравлическими машинами (рис. 1.15.5). Они позволяют получить значительный выигрыш в силе. Если поршень в узком цилиндре переместить вниз под действием внешней силы на расстояние
то поршень в широком цилиндре переместится на расстояние
поднимая тяжелый груз.
Таким образом, выигрыш в силе в n раз обязательно сопровождается таким же проигрышем в расстоянии. При этом произведение силы на расстояние остается неизменным:
Это правило выполняется для любых идеальных машин, в которых не действуют силы трения. Оно называется «золотым правилом механики».
Рисунок 1.15.5. Гидравлическая машина. Гидравлические машины, используемые для подъема грузов, называются домкратами. Они широко применяются также в качестве гидравлических прессов. В качестве жидкости обычно используются минеральные масла. Источник УчебникиЖурнал «Квант»ОбщиеГидростатическое давлениеРассмотрим равновесие однородной жидкости, находящейся в поле тяготения Земли. На каждую частицу жидкости, находящейся в поле тяготения Земли, действует сила тяжести. Под действием этой силы каждый слой жидкости давит на расположенные под ним слои. В результате давление внутри жидкости на разных уровнях не будет одинаковым. Следовательно, в жидкостях существует давление, обусловленное ее весом. Давление, обусловленное весом жидкости, называют гидростатическим давлением. Для количественного расчета мысленно выделим в жидкости малый объем цилиндрической формы, расположенный вертикально, сечением S и высотой h (рис. 2). В случае неподвижной жидкости вес этого цилиндра, а значит, и сила давления на площадку S в основании будет равна силе тяжести \( Тогда давление на площадку p = \rho gh\) — гидростатическое давление, где ρ — плотность жидкости, h — высота столба жидкости. Таким образом, гидростатическое давление равно весу столба жидкости с единичным основанием и высотой, равной глубине погружения точки под свободной поверхностью жидкости. Графически зависимость давления от глубины погружения в жидкость представлена на рисунке 3. Давление жидкости на дно не зависит от формы сосуда, а определяется только высотой уровня жидкости и ее плотностью. Во всех случаях, приведенных на рисунке 4, давление жидкости на дно сосудов одинаково. Жидкость давит на данной глубине одинаково по всем направлениям — не только вниз, но и вверх, и в стороны. Следовательно, давление на стенку на данной глубине будет таким же, как и давление на горизонтальную площадку, расположенную на той же глубине. Если над свободной поверхностью жидкости создается давление p то давление в жидкости на глубине будет Обратите внимание на различие выражений: «давление жидкости на глубине h» (p = pgh) и «давление в жидкости на глубине h» (p = p + pgh). Это надо учитывать при решении различных задач. Силы давления на дно и на стенки можно рассчитать по формулам\[ F_d = \rho gh S_d\] — сила давления жидкости на горизонтальное дно, где Sd — площадь дна; F_ В покоящейся жидкости свободная поверхность жидкости всегда горизонтальна. Нередко встречаются случаи, когда жидкость, покоясь относительно сосуда, движется вместе с ним. Если при этом сосуд движется равномерно и прямолинейно, то свободная поверхность жидкости будет горизонтальна. Но если сосуд движется с ускорением, то ситуация меняется и возникают вопросы о форме свободной поверхности жидкости, о распределении давления в ней. Так, в случае горизонтального движения сосуда с ускорением \( \vec a\) в поле тяготения Земли любая часть жидкости массой m движется с тем же ускорением \( \vec a\) под действием равнодействующей силы давления \( \vec N_d\), действующей со стороны остальной жидкости и силы тяжести \( Основное уравнение динамики: \vec N_d + m \vec g = m \vec a.\) В результате свободная поверхность жидкости не будет горизонтальна, а образует с горизонтом угол α, который можно легко найти, если спроецировать а основное уравнение динамики на горизонтальную и вертикальную оси\[ N_d \sin \alpha = ma; \ N_d \cos \alpha = mg\]. Отсюда \operatorname Давление на горизонтальную поверхность (горизонтальное дно) будет возрастать в направлении, противоположном ускорению. ЛитератураАксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 95-97. Источник Давление — величина, равная отношению силы, действующей перпендикулярно поверхности, к площади этой поверхности
где Давление — величина скалярная , у давления нет направления.. Молекулы газа, совершая беспорядочное, хаотическое движение, не связаны или весьма слабо связаны силами взаимодействия, поэтому они движутся свободно и в результате соударений стремятся разлететься во все стороны, заполняя весь предоставленный им объем, т. е. объем газа определяется объемом того сосуда, который газ занимает. Как и газ, жидкость принимает форму того сосуда, в который она заключена. Но в жидкостях в отличие от газов среднее расстояние между молекулами остается практически постоянным, поэтому жидкость обладает практически неизменным объемом. Хотя свойства жидкостей и газов во многом отличаются, в ряде механических явлений их поведение определяется одинаковыми параметрами и идентичными уравнениями. Поэтому гидроаэромеханика — раздел механики, изучающий равновесие и движение жидкостей и газов, их взаимодействие между собой и обтекаемыми ими твердыми телами,— использует единый подход к изучению жидкостей и газов. В механике с большой степенью точности жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плотность жидкости мало зависит от давления. Плотность же газов от давления зависит существенно. Из опыта известно, что сжимаемостью жидкости и газа во многих задачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости — жидкости, плотность которой всюду одинакова и не изменяется со временем. Если в покоящуюся жидкость поместить тонкую пластинку, то части жидкости, находящиеся по разные стороны от нее, будут действовать на каждый ее элемент DS с силами DF, которые независимо от того, как пластинка ориентирована, будут равны по модулю и направлены перпендикулярно площадке DS, так как наличие касательных сил привело бы частицы жидкости в движение. Физическая величина, определяемая нормальной силой, действующей со стороны жидкости на единицу площади, называется давлением р жидкости: Единица давления—паскаль (Па): 1 Па равен давлению, создаваемому силой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м2 (1 Па=1 Н/м2). Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жидкости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жидкостью. Рассмотрим, как влияет вес жидкости на распределение давления внутри покоящейся несжимаемой жидкости. При равновесии жидкости давление по горизонтали всегда одинаково, иначе не было бы равновесия. Поэтому свободная поверхность покоящейся жидкости всегда горизонтальна вдали от стенок сосуда. Если жидкость несжимаема, то ее плотность не зависит от давления. Тогда при поперечном сечении S столба жидкости, его высоте h и плотности r вес P = rgSh, а давление на нижнее основание т. е. давление изменяется линейно с высотой. Давление rgh называется гидростатическим давлением. Согласно формуле (28.1), сила давления на нижние слои жидкости будет больше, чем на верхние, поэтому на тело, погруженное в жидкость, действует выталкивающая сила, определяемая законом Архимеда: на тело, погруженное в жидкость (газ), действует со стороны этой жидкости направленная вверх выталкивающая сила, равная весу вытесненной телом жидкости (газа): где r — плотность жидкости, V — объем погруженного в жидкость тела. Источник detector |