Меню

Давление под искривленной поверхностью жидкости это

Давление под искривленной поверхностью жидкости

Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное)давление. Это давление, обусловленное силами поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности – отрицательно.

Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R (Рис.10.3),от которой отсечен шаровой сегмент, опирающийся на окружность радиуса r=Rsinα.

Рис.10.3. На каждый бесконечно малый элемент длины Δl этого контура действует сила поверхностного натяжения ΔF=σΔl, касательная к поверхности сферы. Разложив ΔF на два компонента (ΔF1 и ΔF2), видим, что геометрическая сумма сил ΔF2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих ΔF1:

Разделив эту силу на площадь основания сегмента πr 2 , вычислим избыточное (добавочное) давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривизной поверхности:

Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна

Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Δр.

Формулы являются частным случаемформулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:

где R1 и R2 радиусы кривизны двух любых взаимно-перпендикулярных нормальных сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

Для сферической искривленной поверхности (R1=R2=R) выражение (10.5) переходит в записанное ранее (10.4), для цилиндрической (R1=R и R2=∞) избыточное давление

Для плоской поверхности (R1=R2=∞) силы поверхностного натяжения избыточного давления не создают.

Капиллярные явления

Если поместить узкую трубку(капилляр)одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости менискимеет вогнутую форму, если не смачивает – выпуклую.

Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по выше приведенной формуле. Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называетсякапиллярностью.Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости(гидростатическое давление) ρgh уравновешивается избыточным давлением Δp, т.е.

Читайте также:  Пониженное атмосферное давление при пониженном артериальном давлении

где ρ — плотность жидкости, g — ускорение свободного падения

Если r — радиус капилляра, θ — краевой угол, то из рис.10.3 следует, что (2σ cosθ)/r= ρgh, откуда

В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая – опускается, из последней формулы при θ 0) получим положительные значения h, а при θ > π/2

Рис.10.3. (cosθ 3 , σ=0,073 Н/м) в капилляре диаметром 10 мкм поднимается на высоту h=3м.

Капиллярные явления играют большую роль в технике, в частности, в строительстве. Например, влагообмен в почве и пористых строительных материалах осуществляется за счет поднятия воды по тончайшим капиллярам. Поэтому важно принять специальные меры по гидроизоляции строительных конструкций в местах с высоким стоянием грунтовых вод. На капиллярности основано впитывание влаги деревянными элементами, поэтому их предварительно пропитывают влагостойкими жидкостями (олифа, эпоксидные смолы, продукты нефтепереработки), покрывают красками и лаками.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

§ 68. Давление под искривленной поверхностью жидкости

Если поверхность жидкости не плоская, а искривленная, то она оказывает на жид­кость избыточное (добавочное) давление. Это давление, обусловленное силами по­верхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности — отрицательно.

Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сег­мент, опирающийся на окружность радиу­са r=Rsin (рис. 100). На каждый бес­конечно малый элемент длины l этого контура действует сила поверхностного натяжения F=l, касательная к по­верхности сферы. Разложив F на два компонента (F1 и F2), видим, что гео­метрическая сумма сил F2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхно­стного натяжения, действующих на вы­резанный сегмент, направлена перпенди­кулярно плоскости сечения внутрь жидко-

сти и равна алгебраической сумме со­ставляющих F1:

Разделив эту силу на площадь основания сегмента r 2 , вычислим избыточное (до­бавочное) давление на жидкость, создава­емое силами поверхностного натяжения и обусловленное кривизной поверхности:

Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направле­на из жидкости и равна

Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину р.

Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа, оп­ределяющей избыточное давление для произвольной поверхности жидкости двоя­кой кривизны:

где R1 и R2 — радиусы кривизны двух любых взаимно перпендикулярных нор­мальных сечений поверхности жидкости в данной точке. Радиус кривизны положи­телен, если центр кривизны соответствую­щего сечения находится внутри жидкости, и отрицателен, если центр кривизны на­ходится вне жидкости.

Читайте также:  Низкое давление и головная боль это симптомы

Для сферической искривленной повер­хности (R1=R2=R) выражение (68.3) пе­реходит в (68.1), для цилиндрической (R1=R и R2=) — избыточное давление

Для плоской поверхности (R1=R2=) силы поверхностного натяжения избыточ­ного давления не создают.

§ 69. Капиллярные явления

Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в ши­рокий сосуд, то вследствие смачивания или несмачивания жидкостью стенок ка­пилляра кривизна поверхности жидкости в капилляре становится значительной. Ес­ли жидкость смачивает материал трубки, то внутри ее поверхность жидкости — ме­ниск— имеет вогнутую форму, если не смачивает — выпуклую (рис. 101).

Под вогнутой поверхностью жидкости появится отрицательное избыточное дав­ление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидко­сти в широком сосуде избыточного давле­ния нет. Если же жидкость не смачивает стенки капилляра, то положительное из­быточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое дав­ление)gh уравновешивается избыточным давлением р, т. е.

где  — плотность жидкости, g — ускоре­ние свободного падения.

Если m радиус капилляра,  — крае­вой угол, то из рис. 101 следует, что (2cos)/r=gh, откуда

В соответствии с тем, что смачиваю­щая жидкость по капилляру поднимается, а несмачивающая — опускается, из фор-

мулы (69.1) при  0) полу­чим положительные значения Л, а при 0>/2 (cos 3 , =0,073 Н/м) в капилляре диаметром 10 мкм поднимается на высоту h3 м.

Капиллярные явления играют боль­шую роль в природе и технике. Например, влагообмен в почве и в растениях осуще­ствляется за счет поднятия воды по тон­чайшим капиллярам. На капиллярности основано действие фитилей, впитывание влаги бетоном и т. д.

Источник

Давление под искривленной поверхностью

Жидкости

Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление. Это давление, обусловленное силами поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности — отрицательно.

Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса г = Rsina (рис. 100). На каждый бесконечно малый элемент длины Dl этого контура действует сила поверхностного натяжения DF = sDl, касательная к поверхности сферы. Разложив DF на два компонента (DF1 и DF2), видим, что геометрическая сумма сил DF2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих DF1:

Читайте также:  Обратный осмос датчик высокого давления регулировка

Разделив эту силу на площадь основания сегмента яг 2 , вычислим избыточное давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривизной поверхности:

(68.1)

Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна

(68.2)

Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Dp.

Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа*, определяющей избыточное давление для произвольной поверхности жидкости двоякое кривизны:

(68.3)

где R1и R2 радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.

Для сферической искривленной поверхности (R1 = R1 = R)выражение (68.3) переходит в (68.1), для цилиндрической (R1 = Rи R2 = ¥) — избыточное давление

В случае плоской поверхности (R1 = R2 = ¥)силы поверхностного натяжения избыточного давления не создают.

Капиллярныe явления

Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск — имеет вогнутую форму, если не смачивает — выпуклую (рис. 101).

Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) rghуравновешивается избыточным давлением Dр, т. е.

где р — плотность жидкости, g — ускорение свободного падения.

Если r— радиус капилляра, q— краевой угол, то из рис. 101 следует, что (2scosq)/r = rgh, откуда

(69.1)

В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая — опускается, из формулы (69.1) при q 0) получим положительные значения А, а при 0>я/2 (cos0 3 ,

Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

Источник

Adblock
detector