Давление под искривленной поверхностью жидкости
Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное)давление. Это давление, обусловленное силами поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности – отрицательно.
Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R (Рис.10.3),от которой отсечен шаровой сегмент, опирающийся на окружность радиуса r=Rsinα.
Рис.10.3. На каждый бесконечно малый элемент длины Δl этого контура действует сила поверхностного натяжения ΔF=σΔl, касательная к поверхности сферы. Разложив ΔF на два компонента (ΔF1 и ΔF2), видим, что геометрическая сумма сил ΔF2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих ΔF1:
Разделив эту силу на площадь основания сегмента πr 2 , вычислим избыточное (добавочное) давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривизной поверхности:
Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна
Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Δр.
Формулы являются частным случаемформулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:
где R1 и R2 — радиусы кривизны двух любых взаимно-перпендикулярных нормальных сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.
Для сферической искривленной поверхности (R1=R2=R) выражение (10.5) переходит в записанное ранее (10.4), для цилиндрической (R1=R и R2=∞) — избыточное давление
Для плоской поверхности (R1=R2=∞) силы поверхностного натяжения избыточного давления не создают.
Капиллярные явления
Если поместить узкую трубку(капилляр)одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости менискимеет вогнутую форму, если не смачивает – выпуклую.
Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по выше приведенной формуле. Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называетсякапиллярностью.Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости(гидростатическое давление) ρgh уравновешивается избыточным давлением Δp, т.е.
где ρ — плотность жидкости, g — ускорение свободного падения
Если r — радиус капилляра, θ — краевой угол, то из рис.10.3 следует, что (2σ cosθ)/r= ρgh, откуда
В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая – опускается, из последней формулы при θ 0) получим положительные значения h, а при θ > π/2
Рис.10.3. (cosθ 3 , σ=0,073 Н/м) в капилляре диаметром 10 мкм поднимается на высоту h=3м.
Капиллярные явления играют большую роль в технике, в частности, в строительстве. Например, влагообмен в почве и пористых строительных материалах осуществляется за счет поднятия воды по тончайшим капиллярам. Поэтому важно принять специальные меры по гидроизоляции строительных конструкций в местах с высоким стоянием грунтовых вод. На капиллярности основано впитывание влаги деревянными элементами, поэтому их предварительно пропитывают влагостойкими жидкостями (олифа, эпоксидные смолы, продукты нефтепереработки), покрывают красками и лаками.
Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Источник
§ 68. Давление под искривленной поверхностью жидкости
Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление. Это давление, обусловленное силами поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности — отрицательно.
Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса r=Rsin (рис. 100). На каждый бесконечно малый элемент длины l этого контура действует сила поверхностного натяжения F=l, касательная к поверхности сферы. Разложив F на два компонента (F1 и F2), видим, что геометрическая сумма сил F2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидко-
сти и равна алгебраической сумме составляющих F1:
Разделив эту силу на площадь основания сегмента r 2 , вычислим избыточное (добавочное) давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривизной поверхности:
Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна
Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину р.
Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа, определяющей избыточное давление для произвольной поверхности жидкости двоякой кривизны:
где R1 и R2 — радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.
Для сферической искривленной поверхности (R1=R2=R) выражение (68.3) переходит в (68.1), для цилиндрической (R1=R и R2=) — избыточное давление
Для плоской поверхности (R1=R2=) силы поверхностного натяжения избыточного давления не создают.
§ 69. Капиллярные явления
Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск— имеет вогнутую форму, если не смачивает — выпуклую (рис. 101).
Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) gh уравновешивается избыточным давлением р, т. е.
где — плотность жидкости, g — ускорение свободного падения.
Если m — радиус капилляра, — краевой угол, то из рис. 101 следует, что (2cos)/r=gh, откуда
В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая — опускается, из фор-
мулы (69.1) при 0) получим положительные значения Л, а при 0>/2 (cos 3 , =0,073 Н/м) в капилляре диаметром 10 мкм поднимается на высоту h3 м.
Капиллярные явления играют большую роль в природе и технике. Например, влагообмен в почве и в растениях осуществляется за счет поднятия воды по тончайшим капиллярам. На капиллярности основано действие фитилей, впитывание влаги бетоном и т. д.
Источник
Давление под искривленной поверхностью
Жидкости
Если поверхность жидкости не плоская, а искривленная, то она оказывает на жидкость избыточное (добавочное) давление. Это давление, обусловленное силами поверхностного натяжения, для выпуклой поверхности положительно, а для вогнутой поверхности — отрицательно.
Для расчета избыточного давления предположим, что свободная поверхность жидкости имеет форму сферы радиуса R, от которой мысленно отсечен шаровой сегмент, опирающийся на окружность радиуса г = Rsina (рис. 100). На каждый бесконечно малый элемент длины Dl этого контура действует сила поверхностного натяжения DF = sDl, касательная к поверхности сферы. Разложив DF на два компонента (DF1 и DF2), видим, что геометрическая сумма сил DF2 равна нулю, так как эти силы на противоположных сторонах контура направлены в обратные стороны и взаимно уравновешиваются. Поэтому равнодействующая сил поверхностного натяжения, действующих на вырезанный сегмент, направлена перпендикулярно плоскости сечения внутрь жидкости и равна алгебраической сумме составляющих DF1:
Разделив эту силу на площадь основания сегмента яг 2 , вычислим избыточное давление на жидкость, создаваемое силами поверхностного натяжения и обусловленное кривизной поверхности:
(68.1)
Если поверхность жидкости вогнутая, то можно доказать, что результирующая сила поверхностного натяжения направлена из жидкости и равна
(68.2)
Следовательно, давление внутри жидкости под вогнутой поверхностью меньше, чем в газе, на величину Dp.
Формулы (68.1) и (68.2) являются частным случаем формулы Лапласа*, определяющей избыточное давление для произвольной поверхности жидкости двоякое кривизны:
(68.3)
где R1и R2 — радиусы кривизны двух любых взаимно перпендикулярных нормальных сечений поверхности жидкости в данной точке. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости.
Для сферической искривленной поверхности (R1 = R1 = R)выражение (68.3) переходит в (68.1), для цилиндрической (R1 = Rи R2 = ¥) — избыточное давление
В случае плоской поверхности (R1 = R2 = ¥)силы поверхностного натяжения избыточного давления не создают.
Капиллярныe явления
Если поместить узкую трубку (капилляр) одним концом в жидкость, налитую в широкий сосуд, то вследствие смачивания или несмачивания жидкостью стенок капилляра кривизна поверхности жидкости в капилляре становится значительной. Если жидкость смачивает материал трубки, то внутри ее поверхность жидкости — мениск — имеет вогнутую форму, если не смачивает — выпуклую (рис. 101).
Под вогнутой поверхностью жидкости появится отрицательное избыточное давление, определяемое по формуле (68.2). Наличие этого давления приводит к тому, что жидкость в капилляре поднимается, так как под плоской поверхностью жидкости в широком сосуде избыточного давления нет. Если же жидкость не смачивает стенки капилляра, то положительное избыточное давление приведет к опусканию жидкости в капилляре. Явление изменения высоты уровня жидкости в капиллярах называется капиллярностью. Жидкость в капилляре поднимается или опускается на такую высоту h, при которой давление столба жидкости (гидростатическое давление) rghуравновешивается избыточным давлением Dр, т. е.
где р — плотность жидкости, g — ускорение свободного падения.
Если r— радиус капилляра, q— краевой угол, то из рис. 101 следует, что (2scosq)/r = rgh, откуда
(69.1)
В соответствии с тем, что смачивающая жидкость по капилляру поднимается, а несмачивающая — опускается, из формулы (69.1) при q 0) получим положительные значения А, а при 0>я/2 (cos0 3 ,
Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы
Источник