Закон Дальтона для смеси газов: формулировка, пример использования для решения задачи
В конце XVIII и в первой половине XIX века ученые разных стран активно изучали поведение газообразной, жидкой и твердой материи при различных внешних условиях, опираясь в своих исследованиях на представления об атомном и молекулярном строении вещества. Одним из таких ученых был британец Джон Дальтон. Закон для смеси газов, который в настоящее время носит его фамилию, рассматривается в данной статье.
Особые условия
Прежде чем формулировать закон Дальтона для смеси газов, следует разобраться с одним из понятий. Это очень важно, поскольку только для такого вещества справедлив этот закон. Речь идет об идеальном газе. Что же это такое?
Под идеальным полагается газ, для которого справедливы следующие требования:
- размеры молекул и атомов в нем настолько малы, что их можно считать материальными точками, имеющими нулевой объем;
- молекулы и атомы не взаимодействуют между собой.
Таким образом, идеальный газ представляет собой совокупность материальных точек, движущихся хаотично. Скорость их движения и масса однозначно определяют температуру всей смеси. Давление, которое исследуемое вещество оказывает на стенки сосуда, зависит от таких макроскопических параметров, как температура, объем сосуда и число молекул.
Для такой газовой модели справедливо равенство:
Оно называется уравнением состояния и объединяет давление (P), температуру (T), объем (V) и количество вещества в молях (n). Величина R – это коэффициент пропорциональности, который равен 8,314 Дж/(К*моль).
Удивительное в этой формуле то, что она не включает ни одного параметра, который бы зависел от химической природы молекул и атомов.
Идеальными можно считать практически любые газы и их смеси, если температура не слишком низкая, а давление не слишком большое. Обратите внимание! Комнатная температура и атмосферное давление попадают в эти пределы.
Парциальное давление
Закон Дальтона для смеси газов идеальных предполагает знание еще об одном макроскопическом параметре – парциальном давлении.
Предположим, что имеется некоторая смесь, состоящая из 2-х компонентов, например, H2 и He. Эта смесь находится в сосуде конкретного объема и на его стенки создает определенное давление. Поскольку молекулы водорода и атомы гелия не взаимодействуют друг с другом, тогда для любых расчетов макроскопических характеристик оба компонента можно рассматривать независимо друг от друга.
Парциальным давлением компонента называется давление, которое он создает независимо от остальных компонентов смеси, занимая предоставленный ему объем. В рассматриваемом примере можно говорить о парциальном давлении H2 и такой же характеристики для He. Эта величина выражается в паскалях и обозначается для i-го компонента как Pi.
Газовые смеси и закон Дальтона
Джон Дальтон, изучая различные летучие, включая водяной пар, при разных температурах и давлениях, пришел к следующему выводу: давление смеси совершенно любых подобных веществ в любых пропорциях равно сумме парциальных давлений всех его компонентов. Эта формулировка называется законом Дальтона для давления смеси газов и записывается следующим математическим равенством:
Здесь Ptot – полное давление смеси.
Этот достаточно простой закон выполняется только для идеальных газовых смесей, компоненты которых не взаимодействуют химически друг с другом.
Другая формулировка закона Дальтона
Закон Дальтона для смеси газов может быть выражен не только через парциальные давления, но также через мольные доли каждого компонента. Получим соответствующую формулу.
Поскольку каждый компонент ведет себя независимо от других в газовой смеси, тогда для него можно записать уравнение состояния:
Это уравнение справедливо для каждого i-го компонента, поскольку для всех них температура T и объем V являются одинаковыми. Величина ni – это количество молей компонента i в смеси.
Выразим теперь парциальное давление, и разделим его на полное давление всей смеси, тогда получим:
Здесь n — общее количество вещества во всей смеси. Его можно получить, если просуммировать все ni. Отношение ni/n называется мольной долей компонента i в смеси. Ее обычно обозначают символом xi. Через мольные доли закон Дальтона записывается так:
Мольная доля часто представляется в виде атомных процентов компонентов в смеси. Например, 21 % O2 в воздухе говорит о том, что его мольная доля равна 0,21, то есть каждая пятая молекула воздуха является кислородом.
Применение рассмотренного закона для решения задачи
Известно, что газовая смесь из кислорода и азота находится под давлением 5 атмосфер в баллоне. Зная, что в нем содержится 10 моль азота и 3 моль кислорода, необходимо определить парциальное давление каждого вещества.
Чтобы ответить на вопрос задачи, найдем сначала общее количество вещества:
Теперь можно рассчитать мольную долю каждого компонента в смеси. Имеем:
Пользуясь формулой закона Дальтона через мольную долю компонента, рассчитываем парциальное давление каждого газа в баллоне:
Как видно из полученных цифр, сумма этих давлений даст 5 атмосфер. Парциальное давление каждого газа прямо пропорционально его мольной доли в смеси.
Источник
Смеси идеальных газов
ЛЕКЦИЯ 2
Все зависимости, полученные выше для идеальных газов, справедливы и для их смесей, если в них подставлять газовую постоянную, молекулярную массу и теплоемкость смеси.
Закон Дальтона.В инженерной практике часто приходится иметь дело с газообразными веществами, близкими по свойствам к идеальным газам и представляющими собой механическую смесь отдельных компонентов различных газов, химически не реагирующих между собой. Это так называемые газовые смеси. В качестве примера можно назвать продукты сгорания топлива в двигателях внутреннего сгорания, топках печей и паровых котлов, влажный воздух в сушильных установках и т. п.
Основным законом, определяющим поведение газовой смеси, является закон Дальтона: полное давление смеси идеальных газов равно сумме парциальных давлений всех входящих в нее компонентов:
Парциальное давление pi — давление, которое имел бы газ, если бы он один при той же температуре занимал весь объем смеси.
Способы задания смеси.Состав газовой смеси может быть задан массовыми, объемными или мольными долями.
Массовой долей называется отношение массы отдельного компонента Мi, к массе смеси М:
.
Очевидно, что и
.
Массовые доли часто задаются в процентах. Например, для сухого воздуха ;
.
Объемная доля представляет собой отношение приведенного объема газа V, к полному объему смеси V: .
Приведенным называется объем, который занимал бы компонент газа, если бы его давление и температура равнялись давлению и температуре смеси.
Для вычисления приведенного объема запишем два уравнения состояния i-го компонента:
; (2.1)
.
Первое уравнение относится к состоянию компонента газа в Смеси, когда он имеет парциальное давление pi и занимает полный объем смеси, а второе уравнение — к приведенному состоянию, когда давление и температура компонента равны, как и для смеси, р и Т. Из уравнений следует, что
. (2.2)
Просуммировав соотношение (2.2) для всех компонентов смеси, получим с учетом закона Дальтона ,откуда
. Объемные доли также часто задаются в процентах. Для воздуха
,
.
Иногда бывает удобнее задать состав смеси мольными долями. Мольной долей называется отношение количества молей Ni рассматриваемого компонента к общему количеству молей смеси N.
Пусть газовая смесь состоит из N1 молей первого компонента, N2 молей второго компонента и т. д. Число молей смеси , а мольная доля компонента будет равна
.
В соответствии с законом Авогадро объемы моля любого газа при одинаковых р и Т, в частности при температуре и давлении смеси, в идеально газовом состоянии одинаковы. Поэтому приведенный объем любого компонента может быть вычислен как произведение объема моля на число молей этого компонента, т. е.
а объем смеси — по формуле
. Тогда
, и, следовательно, задание смесильных газов мольными долями равно заданию ее объемными долями.
Газовая постоянная смеси газов. Просуммировавуравнения (2.1) для всех компонентов смеси, получим . Учитывая
, можно записать
, (2.3)
. (2.4)
Из уравнения (2.3) следует, что смесь идеальных газов также подчиняется уравнению Клапейрона. Поскольку то из (2.4) следует, что газовая постоянная смеси [Дж/(кг-К)] имеет вид
(2.5)
Кажущаяся молекулярная масса смеси. Выразим формально газовую постоянную смеси R, введя кажущуюся окулярную массу смеси :
(2.6)
Сравнивая правые части соотношений (2.5) и (2.6), найдем
.
Изопределения массовых долей следует, что
Просуммировав это соотношение для всех компонентов и учитывая, что , получим выражение для кажущейся молекулярной и массы смеси, заданной объемными долями:
. (2.7)
Соотношение между объемными и массовыми долями. Учитывая (2.7), получаем .
Поскольку , то
Разделив числитель и знаменатель этой формулы на массу смеси М, получим
.
Аналитическое выражение первого закона термодинамики
Первый закон термодинамики представляет собой частный случай всеобщего закона сохранения и превращения энергии применительно к тепловым явлениям. В соответствии с уравнением Эйнштейна надо рассматривать единый закон сохранения и превращения массы и энергии. Однако в технической термодинамике мы имеем дело со столь малыми скоростями объекта, что дефект массы равен нулю, и поэтому закон сохранения энергии можно рассматривать независимо.
Закон сохранения и превращения энергии является фундаментальным законом природы, который получен на основе обобщения огромного количества экспериментальных данных и применим ко всем явлениям природы. Он утверждает, что энергия не исчезает и не возникает вновь, она лишь переходит из одной формы в другую, причем убыль энергии одного вида дает эквивалентное количество энергии другого вида.
В числе первых ученых, утверждавших принцип сохранения материи и энергии, был наш соотечественник М. В. Ломоносов (1711 — 1765 гг.).
Пусть некоторому рабочему телу с объемом V и массой М, имеющему температуру Т и давление р, сообщается извне бесконечно малое количество теплоты . В результате подвода теплоты тело нагревается на dT и увеличивается в объеме на dV.
Повышение температуры тела свидетельствует об увеличении кинетической энергии его частиц. Увеличение объема тела приводит к изменению потенциальной энергии частиц. В результате внутренняя энергия тела увеличивается на dU. Поскольку рабочее тело окружено средой, которая оказывает на него давление, то при расширении оно производит механическую работу против сил внешнего давления. Так как никаких других изменений в системе не происходит, то по закону сохранения энергии
(2.8)
т. е. теплота, сообщаемая системе, идет на приращение ее внутренней энергии и на совершение внешней работы.
Полученное уравнение является математическим выражением первого закона термодинамики. Каждый из трех членов этого соотношения может быть положительным, отрицательным или равным нулю. Рассмотрим некоторые частные случаи.
1. — теплообмен системы с окружающей средой отсутствует, т. е. теплота к системе не подводится и от нее не отводится. Процесс без теплообмена называется адиабатным. Для него уравнение (2.8) принимает вид:
.
Следовательно, работа расширения, совершаемая системой в адиабатном процессе, равна уменьшению внутренней энергии данной системы. При адиабатном сжатии рабочего тела затрачиваемая извне работа целиком идет на увеличение внутренней энергии системы.
2. — при этом объем тела не изменяется, dV=0 . Такой процесс называется изохорным, для него
,
т. е. количество теплоты, подведенное к системе при постоянном объеме, равно увеличению внутренней энергии данной системы.
3. dU=0 – внутренняя энергия системы не изменяется и
,
т.е. сообщаемая системе теплота превращается в эквивалентную ей внешнюю работу.
Для системы, содержащей 1 кг рабочего тела
. (2.9)
Проинтегрировав уравнения (2.8) и (2.9) для некоторого процесса, получим выражение первого закона термодинамики в интегральной форме:
;
.
Внутренняя энергия системы включает в себя:
кинетическую энергию поступательного, вращательного и колебательного движения частиц;
потенциальную энергию взаимодействия частиц;
энергию электронных оболочек атомов;
В большинстве теплоэнергетических процессов две последние составляющие остаются неизменными. Поэтому в дальнейшем под внутренней энергией будем понимать энергию хаотического движения молекул и атомов, включающую энергию поступательного, вращательного и колебательного движений как молекулярного, так и внутримолекулярного, а также потенциальную энергию сил взаимодействия между молекулами.
Кинетическая энергия молекул является функцией температуры, значение потенциальной энергии зависит от среднего расстояния между молекулами и, следовательно, от занимаемого газом объема V, т. е. является функцией V. Поэтому внутренняя энергия U есть функция состояния тела.
Для сложной системы она определяется суммой энергий отдельных частей, т. е. обладает свойством аддитивности. Величина и=U/М, называемая удельной внутренней энергией (Дж/кг), представляет собой внутреннюю энергию единицы массы вещества.
В дальнейшем для краткости будем называть величину и просто внутренней энергией. Поскольку внутренняя энергия есть функция состояния тела, то она может быть представлена в виде функции двух любых независимых параметров, определяющих это состояние:
;
;
.
Ее изменение в термодинамическом процессе не зависит от характера процесса и определяется только начальным и конечным состояниями тела:
;
— значение внутренней энергии в начальном состоянии, а
— в конечном. Математически это означает, что бесконечно малое изменение внутренней энергии du есть полный дифференциал и; если выразить внутреннюю энергию в виде функции удельного объема и температуры, то
Внутренняя энергия идеального газа, в котором отсутствуют силы взаимодействия между молекулами, не зависит от объема газа или давления , а определяется только его температурой, поэтому производная от внутренней энергии идеального газа по температуре есть полная производная:
Для задач технической термодинамики важно не абсолютное значение внутренней энергии, а ее изменение в различных термодинамических процессах. Поэтому начало отсчета внутренней энергии может быть выбрано произвольно. Например, в соответствии с международным соглашением для воды за нуль принимается значение внутренней энергии при температуре 0,01 °С и давление 610,8 Па, а для идеальных газов — при 0 °С вне зависимости от давления.
Источник