Меню

Давление в кислородном баллоне на улице при температуре

pavelvog.ru

Для сварки и резки выпускают технический кислород 1-го сорта чистотой не менее 99,7 % и 2-го сорта чистотой не менее 99,5 %. При хранении или транспортировке наполненных баллонов давление в них должно соответствовать температуре окружающего воздуха. Хранение и транспортировка наполненных баллонов при температуре выше 60 °С не допускается. Баллоны с кислородом должны возвращаться на заполнение с остаточным давлением не ниже 0,05 МПа (0,5 кгс/см2).

Aцетилен (С2Н2) является химическим соединением углерода с водородом. Это бесцветный горючий газ, имеющий резкий характерный запах. Длительное вдыхание ацетилена вызывает головокружение, тошноту, а иногда и сильное общее отравление. Aцетилен легче воздуха: 1 м3 ацетилена при 20 °С и атмосферном давлении имеет массу 1,09 кг Aцетилен является взрывоопасным газом. Температура самовоспламенения ацетилена лежит в пределах 240-630 °С и зависит от давления и присутствия в ацетилене различных примесей. При атмосферном давлении смесь ацетилена с воздухом взрывается при содержании в ней ацетилена 2,2 % и более, а в смеси с кислородом при содержании – 2,8 % и более. Взрыв ацетилено-воздушной или ацетилено-кислородной смеси может произойти от искры, пламени или сильного местного нагрева, поэтому обращение с карбидом кальция и с ацетиленом требует осторожности и строгого соблюдения правил безопасного труда.

В промышленности ацетилен получают при разложении жидких горючих, таких как нефть, керосин, воздействием электродугового разряда. Применяется также способ производства ацетилена из природного газа (метана). Смесь метана с кислородом сжигают в специальных реакторах при температуре 1300-1500 °С. Из полученной смеси с помощью растворителя извлекается концентрированный ацетилен. Получение ацетилена промышленными способами на 30-40 % дешевле, чем из карбида кальция. Промышленный ацетилен закачивается в баллоны, где находится в порах специальной массы растворенным в ацетоне. В таком виде потребители получают баллонный промышленный ацетилен. Свойства ацетилена не зависят от способа его получения. Остаточное давление в ацетиленовом баллоне при температуре 20 °С должно быть 0,05-0,1 МПа (0,5-1,0 кгс/см2). Рабочее давление в наполненном баллоне не должно превышать 1,9 МПа (19 кгс/см2) при 20 °С. Для сохранности наполнительной массы нельзя отбирать ацетилен из баллона со скоростью 1700 дм3/ч.

Рассмотрим подробнее способ получения ацетилена в генераторе из карбида кальция. Карбид кальция получают путем сплавления кокса и негашеной извести в электрических дуговых печах при температуре 1900-2300 °С, при которой протекает реакция:

Расплавленный карбид кальция сливают из печи в формы-изложницы, где он остывает. Далее его дробят и сортируют на куски размером от 2 до 80 мм. Готовый карбид кальция упаковывают в герметически закрываемые барабаны или банки из кровельной жести по 40; 100; 130 кг. В карбиде кальция не должно быть более 3 % частиц размером менее 2 мм (пыль). По соответствующему стандарту устанавливаются размеры (грануляция) кусков карбида кальция: 2×8; 8×15;15×25;25×80 мм.

При взаимодействии с водой карбид кальция выделяет газообразный ацетилен и образует в остатке гашеную известь, являющуюся отходом.

Реакция разложения карбида кальция водой происходит по схеме:

Из 1 кг химически чистого карбида кальция теоретически можно получить 372 дм3 (литра) ацетилена. Практически из-за наличия примесей в карбиде кальция выход ацетилена составляет до 280 дм3 (литров). В среднем для получения 1000 дм3 (литров) ацетилена расходуется 4,3-4,5 кг карбида кальция.

Карбидная пыль при смачивании водой разлагается почти мгновенно. Карбидную пыль нельзя применять в обычных ацетиленовых генераторах, рассчитанных для работы на кусковом карбиде кальция. Для разложения карбидной пыли применяются генераторы специальной конструкции. Для охлаждения ацетилена при разложении карбида кальция берут от 5 до 20 дм3 (литров) воды на 1 кг карбида кальция. Применяют также «сухой» способ разложения карбида кальция. На 1 кг мелко раздробленного карбида кальция в генератор подают 0,2-1 дм3 (литр) воды. В этом процессе гашения известь получается, не в виде жидкого известкового ила, а в виде сухой «пушонки», удаление, транспортировка и утилизация которой значительно упрощаются.

Читайте также:  Инсульт при высоком давлении происходит если

При сварке и резке металлов можно применять также и другие горючие газы и пары горючих жидкостей. Для нагрева и расплавления металла при сварке необходимо, чтобы температура пламени примерно в 2 раза превышала температуру свариваемого металла. Поэтому использовать газы – заменители ацетилена целесообразно только при сварке металлов с более низкой температурой плавления, чем у стали, таких как алюминий, его сплавы, латунь, свинец.

При резке металлолома используют пропан. Пропан – это горючий газ, который получают при добыче природных газов или при переработке нефти. Обычно получают не чистый пропан, а с примесью бутана до 5-30 %. Такая смесь именуется пропан-бутановой. Для сварочных работ пропан-бутановая смесь доставляется потребителю в сжиженном состоянии в специальных баллонах. Переход смеси из жидкого состояния в газообразное происходит самопроизвольно в верхней части баллона из-за меньшей удельной массы газа по сравнению со сжиженной смесью. Технический пропан тяжелее воздуха и имеет неприятный специфический запах.

Природный газ состоит в основном из метана (степень чистоты 98 %), остальное – примеси в небольших количествах бутана и пропана. Газ имеет слабый запах, поэтому, чтобы обнаружить утечку, добавляют специальные пахнущие вещества. Чаще всего метан применяют при резке металлов.

Для образования газового пламени в качестве горючего можно использовать и другие газы (водород, коксовый и нефтяной газы), горючие жидкости (бензин, керосин, ацетон и т. д.). Жидкие горючие менее дефицитны, но требуют специальной тары для хранения. Для сварки, резки и пайки горючая жидкость преобразуется в пары пламенем наконечника горелки или резака.

Характеристика различных горючих газов и жидкостей, применяющихся в различных отраслях машиностроения и в ювелирной промышленности, приведена в табл. 50.

Кислородный баллон представляет собой металлическую емкость, предназначенную для транспортировки кислорода. Форма выпуска баллона регулируется ГОСТом 949-73.

Основное применение баллоны кислородные нашли в сварочном деле, однако распространено их использование в медицине и пищевом производстве. В последних вариантах применяется чистый кислород, в то время как промышленные работы происходят с применением технического O2.

Высокую эффективность в производстве показывают кислородные баллоны, подлежащие свободному перемещению. Их мобильность ускоряет процесс работы, исключая этапы долгой специализированной доставки.

Согласно вышеназванному ГОСТу, баллоны для транспортировки кислорода выполняются в виде широкой бесшовной трубы из прочной стали. Этим объясняется большой вес емкости. Объем вещества в баллоне – 40 кубических дециметров, однако, встречаются и нестандартные варианты. Маленькие баллоны вместимостью 1,5,10,13,20 литров изготавливаются, согласно тем же ГОСТам, что и баллоны стандартной емкости.

Рассмотрим основные составляющие емкости кислородного баллона:

Латунная деталь, установленная в верхней части баллона кислородного. В целях безопасности вентиль всегда закрыт колпаком. Колпак выполняется из алюминия или пластмассы. Несмотря на то, что заглушка является неотъемлемой комплектующей, она может быть изготовлена из любого материала. Причина в том, что внешние части запирающего механизма не соприкасаются с горючим содержимым баллона. Вес стандартного вентиля достигает 2 килограмма.

Представляет собой стальную ленту в виде кольца, наваренную на баллон. Позволяет придать емкости вертикальное положение. Вес башмака стандартного баллона более 5 килограмм.

Баллоны, используемые для медицинских целей, выпускают с тележками или с пластмассовыми футлярами. В независимости от формы выпуска, чистый кислород должен присутствовать в любом медицинском учреждении и в каждой машине неотложной помощи. Мобильные баллоны в машинах скорой помощи должны мало весить, чтобы сотрудник кареты в нужный момент мог поднять и перенести емкость.

Читайте также:  Если показатель диастолического давления низкий

Любая емкость с кислородом подлежит обязательной государственной сертификации.

Маркировка кислорода и обозначение цветом

Для идентификации технического вещества внутри баллона используют специальные маркировочные стикеры и цветовые обозначения. Они едины и не подлежат изменению по желанию негосударственных структур. Для сжатого кислорода используют баллон, окрашенный в голубой цвет с черной надписью «Кислород». Остальные данные наносятся на неокрашенную часть емкости. К таким данным относят: номер емкости, вес с обозначением «кг» баллона и вес составляющих частей, емкость с обозначением в литрах, давление, дата и технические характеристики последнего испытания, название производителя, клеймо техконтроля от производителя.

Применение O2 в сварке и резке металла

Кислород в баллонах для сварки и резки металлических изделий применяется повсеместно. Это обусловлено его свойствами: при соприкосновении с воздухом О2 дает пламя, внутренняя температура которого достигает 3000°C. Это температура, при которой можно соединить многие виды металлов.

Процент объемного кислородного содержания для сварки:

  • От 99,2% — используется в кислородно ацетиленовой сварке
  • 92%-98% — используется при поверхностной закалке металла, пайке.

Транспортировку и хранение большого объёма кислорода необходимо осуществлять в жидком виде. В этом случае сжиженный газ испаряется, принося значительные финансовые потери, однако повышенная степень безопасности оправдывает такие действия с лихвой.

Сварка и резка металла производится газообразным кислородом, поэтому перед началом процесса необходимо его превращение в газ. Для этого существуют бензонасосные и насосные газификационные установки (например, стационарная СГУ-1). Они газифицируют не переохлажденный кислород, наполняя им баллоны. Давление при наполнении реципиентов доходит до 240 кгс/см2 (24 МПа).

Техника безопасности при работе с кислородом

Кислородная сварка – один из самых опасных процессов на производстве. Приступая к выполнению таких работ, необходимо придерживаться общих правил безопасности при обращении с О2:

  1. Кислород, взаимодействуя с другими горючими веществами, может вызвать воспламенение. Для работы с ним можно использовать только те материалы, которые сделают процесс сварки или резки, безопасным;
  2. Сжатый кислород под давлением более 30 кгс/см2 контактируя с жирами и маслами окисляет их. Результат окисления с выделением теплоты – взрыв. Поэтому перед началом работ нужно убедиться в отсутствии жирных пятен на одежде специалистов, полу и на баллонах;
  3. Сварка кислородом должна происходить в помещении, содержание кислорода в котором не превышает 23%;
  4. После любого рабочего процесса, который включает в себя взаимодействие человека и кислорода, необходимо избегать огня. Одежду лучше проветривать в течение ½ часа;
  5. Жидкий кислород вызывает обморожение мягких тканей человека. Попадая на слизистые оболочки, кислород вызывает химический ожег. Любая работа со сжиженным веществом должна производиться в защитных перчатках и очках;
  6. Ни в коем случае нельзя использовать трубопровод для транспортировки O2 для перемещения других газов. Пустой трубопровод необходимо прочищать от жиров, не допускать повреждений и нагревания.Несмотря на то, что кислород важное вещество для производственных работ и для обеспечения жизнедеятельности в медицинских условиях, он опасен. Длительное пребывание человека в помещении с повышенной концентрацией кислорода ведет к ухудшению самочувствия и обморожению кожных покровов. Работать с данным газом можно после соблюдения всех условий безопасности.

10.1.1. Баллоны должны рассчитываться и изготовляться по НД, согласованной в установленном порядке.

Читайте также:  Котел аристон падает давление при включении горячей воды

10.1.2. Баллоны должны иметь вентили, плотно ввернутые в отверстия горловины или в расходно-наполнительные штуцера у специальных баллонов, не имеющих горловины.

10.1.3. Баллоны для сжатых, сжиженных и растворенных газов вместимостью более 100 л должны быть снабжены паспортом по форме приложения 2.

10.1.4. На баллоны вместимостью более 100 л должны устанавливаться предохранительные клапаны. При групповой установке баллонов допускается установка предохранительного клапана на всю группу баллонов.

10.1.5. Баллоны вместимостью более 100 л, устанавливаемые в качестве расходных емкостей для сжиженных газов, которые используются как топливо на автомобилях и других транспортных средствах, кроме вентиля и предохранительного клапана должны иметь указатель максимального уровня наполнения. На таких баллонах также допускается установка специального наполнительного клапана, вентиля для отбора газа в парообразном состоянии, указателя уровня сжиженного газа в баллоне и спускной пробки.

10.1.6. Боковые штуцера вентилей для баллонов, наполняемых водородом и другими горючими газами, должны иметь левую резьбу, а для баллонов, наполняемых кислородом и другими негорючими газами, — правую резьбу.

10.1.7. Каждый вентиль баллонов для взрывоопасных горючих веществ, вредных веществ 1-го и 2-го классов опасности по ГОСТ 12.1.007-76 должен быть снабжен заглушкой, навертывающейся на боковой штуцер.

10.1.8. Вентили в баллонах для кислорода должны ввертываться с применением уплотняющих материалов, загорание которых в среде кислорода исключено.

10.1.9. На верхней сферической части каждого баллона должны быть выбиты и отчетливо видны следующие данные:

  • товарный знак изготовителя;
  • номер баллона;
  • фактическая масса порожнего баллона (кг): для баллонов вместимостью до 12 л включительно — с точностью до 0,1 кг; свыше 12 до 55 л включительно — с точностью до 0,2 кг; масса баллонов вместимостью свыше 55 л указывается в соответствии с ГОСТ или ТУ на их изготовление;
  • дата (месяц, год) изготовления и год следующего освидетельствования;
  • рабочее давление Р, МПа (кгс/см 2);
  • пробное гидравлическое давление Рпр, МПа (кгс/см 2);
  • вместимость баллонов, л: для баллонов вместимостью до 12 л включительно — номинальная; для баллонов вместимостью свыше 12 до 55 л включительно — фактическая с точностью до 0,3 л; для баллонов вместимостью свыше 55 л — в соответствии с НД на их изготовление;
  • клеймо ОТК изготовителя круглой формы диаметром 10 мм (за исключением стандартных баллонов вместимостью свыше 55 л);
  • номер стандарта для баллонов вместимостью свыше 55 л.

Высота знаков на баллонах должна быть не менее 6 мм, а на баллонах вместимостью свыше 55 л — не менее 8 мм.

Масса баллонов, за исключением баллонов для ацетилена, указывается с учетом массы нанесенной краски, кольца для колпака и башмака, если таковые предусмотрены конструкцией, но без массы вентиля и колпака.

На баллонах вместимостью до 5 л или с толщиной стенки менее 5 мм паспортные данные могут быть выбиты на пластине, припаянной к баллону, или нанесены эмалевой или масляной краской.

10.1.10. Баллоны для растворенного ацетилена должны быть заполнены соответствующим количеством пористой массы и растворителя. За качество пористой массы и за правильность наполнения баллонов ответственность несет организация, наполняющая баллон пористой массой. За качество растворителя и за правильную его дозировку ответственность несет организация, производящая заполнение баллонов растворителем.

После заполнения баллонов пористой массой и растворителем на его горловине выбивается масса тары (масса баллона без колпака, но с пористой массой и растворителем, башмаком, кольцом и вентилем).

10.1.11. Наружная поверхность баллонов должна быть окрашена в соответствии с табл. 17.

Источник

Adblock
detector