Меню

Давление в плевральной щели его изменения при дыхании

Давление в плевральной полости, изменение его в разные фазы дыхательного цикла и роль в механизме внешнего дыхания. Пневмоторакс.

В плевральной полости имеются три обособленных серозных мешка – в одном из них находится сердце, а в двух других – легкие. Серозная оболочка легкого называется плеврой. Она состоит из двух листков:

• висцерального, — висцеральная (легочная) плевра плотно покрывает легкое, заходит в его борозды, отделяя таким образом доли легкого друг от друга,

• пристеночного, — париетальная (пристеночная) плевра выстилает внутри стенки грудной полости.

В области корня легкого висцеральная плевра переходит в париетальную, образуя таким образом замкнутое щелевидное пространство — плевральную полость. Внутренняя поверхность плевры покрыта мезотелием и увлажняется небольшим количеством серозной жидкости, благодаря чему уменьшается трение между плевральными листками во время дыхательных движений. Давление в плевральной полости ниже, чем атмосферное (принимаемое за нулевое) на 4-9 мм рт. ст., поэтому его называют отрицательным. (При спокойном дыхании внутриплевральное давление равно в фазу вдоха 6-9 мм рт. ст., а в фазу выдоха –4-5 мм рт. ст.; при глубоком вдохе давление может падать до 3 мм рт. ст.). Внутриплевральное давление возникает и поддерживается в результате взаимодействия грудной клетки с тканью легких за счет их эластической тяги. При этом эластическая тяга легких развивает усилие, которое всегда стремится уменьшить объем грудной клетки. Кроме того, атмосферный воздух производит одностороннее (изнутри) давление на легкие через воздухоносные пути. Грудная клетка неподатлива к передаче давления воздуха снаружи на легкие, поэтому атмосферный воздух, растягивая легкие, прижимает их к париетальной плевре и грудной стенке. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Также на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания плевральной жидкости (благодаря деятельности мезотелиальных клеток, которые также обладают способностью поглощать из плевральной полости воздух).

В силу того, что давление в плевральной полости понижено, при ранениях стенки грудной полости с повреждением париетальной плевры в нее поступает окружающий воздух. Это явление называется пневмоторакс. При этом внутриплевральное и атмосферное давления выравниваются, легкое спадается и нарушается его дыхательная функция (т.к. вентиляция легкого при наличии дыхательных движений грудной клетки и диафрагмы становится невозможной)

Различают следующие виды пневмоторакса: • закрытый, — возникает при повреждении висцеральной (например, при спонтанном пневмотораксе) или висцеральной и париетальной плевры (например, при ранении легкого обломком ребра) без проникающего повреждения грудной стенки, — при этом воздух поступает в плевральную полость из легкого,

• открытый, — возникает при проникающем ранении грудной клетки, — при этом воздух может поступать в плевральную полость как из легкого, так и из окружающей среды,

• напряженный. — является крайним проявлением закрытого пневмоторакса, при спонтанном пневмотораксе возникает редко, — при этом воздух поступает в плевральную полость, но, вследствие клапанного механизма, не выходит обратно, а накапливается в ней, что может сопровождаться смещением средостения и выраженными гемодинамическими нарушениями.

По этиологии различают: • самопроизвольный (спонтанный), — возникает при разрыве легочных альвеол (туберкулез, эмфизема легких);

• травматический, — возникает при повреждении грудной клетки,

• искусственный, — введение воздуха или газа в полость плевры специальной иглой, что вызывает сдавливание легкого, — применяется для лечения туберкулеза (вызывает спадение каверны за счет сдавливания легкого).

102 Парциальное давление газов О2 и СО2 в альвеолярном воздухе и напряжение их в крови. Газообмен в легких.

В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа, 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота. Дыхательные газы обмениваются в легких через альвеоло – капиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси, прямо пропорционально его содержанию в ней. Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст., а углекислого газа 40 мм.рт.ст. Напряжение (термин применяемый для газов растворенных в жидкостях) кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа – 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону. Кроме того скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м2, а толщина альвеоло – капиллярной

Читайте также:  Гормоны способствующие повышению артериального давления

мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода. Т.е. он диффундирует в 25 раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давления углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. Для кислорода в норме она равна 30 мл*мин-1*мм.рт.ст.-1 У здорового человека напряжение дыхательных газов в альвеолярной крови, становится практически таким же, как их парциальное давление в альвеолярном воздухе. При нарушениях газообмена в альвеолах в крови повышается напряжение углекислого газа и снижается кислорода (пневмония, туберкулез, пневмосклероз).

103. Большинство современных респираторов обеспечивают ИВЛ путем вдувания теплой увлажненной газовой, или дыхательной, смеси в дыхательные пути; при этом могут задаваться значения давления, объема и временных параметров дыхательного цикла. Респиратор обеспечивает работу вдоха, заменяя диафрагму и инспираторные мышцы грудной клетки. Выдох же совершается пассивно под действием эластической тяги легких . В конце выдоха давление в дыхательных путях либо становится равным атмосферному, либо удерживается на несколько более высоком уровне — ПДКВ .

ПДКВ способствует поддержанию альвеол в открытом состоянии, тем самым препятствуя возникновению ателектазов , нарушению VA/Q и развитию гипоксемии . Обычно применяютПДКВ , не превышающее 5 см вод. ст., что, как правило, эффективно и безопасно. Большие значения применяют только при выраженной гипоксемии

Кислород обладает особенными свойствами в формировании газового наркоза. Тесты, проведенные при глубоких погружениях (91 метр), показали, что смесь из 4% кислорода и 96% азота имеет более высокий наркотический потенциал, чем воздух. Это весьма необычно, поскольку кислород лучше растворяется в липидах, чем азот. Тем не менее, другие исследования показывают, что увеличенное РО2 в сочетании с азотом действительно усиливает наркотическое действие. Большинство физиологов объясняют это кажущееся противоречие тем, что в процессе формирования наркоза между азотом и кислородом возникает какая-то неизвестная на настоящий момент реакция. Влияние кислорода на возникновение наркоза очевидно (поэтому мы рассматриваем воздух и обогащенный найтрокс как смеси, вызывающие наркоз), однако его наркотический потенциал, по-видимому, связан не только с растворимостью в липидах.

Другим соединением, принимающим участие в образовании газового наркоза, является углекислый газ. Многочисленные исследования показывают, что повышение содержания углекислого газа (как во вдыхаемой смеси, так и в мертвых воздушных пространствах) усиливает наркоз. Механизм этого явления еще менее изучен, чем влияние кислорода. Исследования показывают, что углекислый газ обладает в 10 раз большим наркотическим потенциалом, чем азот. Это значение расходится с данными, полученными на основании растворимости в липидах, поскольку растворимость углекислого газа в липидах в 13-20 раз выше, чем у азота.

104Физиологические механизмы водолазной и кессонной болезней.

Декомпрессионная (кессонная) болезнь.

• Декомпрессионная болезнь является следствием нарушения кровообращения, деформации и повреждения клеток и тканей газовыми пузырьками, образующимися в крови и тканях при значительном снижении барометрического давления – декомпрессии.

• Одним из основных факторов развития декомпрессионной болезни является не быстрый подъем с глубины, а превышение допустимого времени пребывания на определенной глубине. При этом в различных тканях накапливается избыточное количество азота (он растворяется до тех пор, пока его концентрация в тканях не сравняется с его концентрацией во вдыхаемой смеси – см. закон Генри).

Читайте также:  Каким должно быть идеальное давление человека

• По скорости накапливания (и выведения) азота ткани разделяются на быстрые и медленные. Их можно распределить следующим образом в порядке замедления: кровь – мышцы – кожа – жир – костная ткань.

• Скорость накопления и выведения азота тканью зависит от интенсивности ее кровоснабжения – чем больше в ткани сосудов, тем быстрее происходят процессы поглощения и выведения поступающих в ткани веществ.

• То есть, при превышении допустимого времени пребывания на определенной глубине (NDL) декомпрессионная болезнь возникает практически независимо от скорости подъема на поверхность.

• Если ныряльщик не только превысил NDL, но и быстро всплыл, то в дополнение к кессонной болезни он рискует получить и газовую эмболию.

• Таким образом, основной причиной декомпрессионной болезни является образование газовых пузырьков во внутренних средах организма в результате перенасыщении его тканей азотом. Соответственно, при повторном погружении время пребывания на каждой глубине будет меньше, поскольку ткани организма уже частично насыщены азотом.

• Чем меньше будет временной промежуток между погружениями, тем больше сокращается безопасное время очередного погружения.

• Риск возникновения декомпрессионной болезни возрастает в случае, если по каким-то причинам затрудняется вывод азота из организма, либо усиливается его поглощение.

Итак, декомпрессионная (кессонная) болезнь развивается следующим образом:

• превышение допустимого времени пребывания на определенной глубине (бездекомпрессионный предел – NDL);

• в крови и тканях накапливается избыточное количество газа;

• при подъеме (даже правильном и медленном) азот не успевает выйти из тканей;

• в связи с уменьшением окружающего давления пузырьки расширяются и сдавливают ткани;

• развивается полная картина кессонной болезни.

Источник

Плевральное давление и его изменение во время дыхания

Плевральное давление – это давление жидкости в узкой щели между легочным и париетальным листками плевры. Давление в плевральной щели ниже атмосферного (отрицательное). В норме это – 4 мм рт.ст. в конце выдоха и – 8 мм рт.ст. в конце вдоха (рис. 6).

Отрицательноедавление уменьшается в направлении сверху вниз примерно на 0,2 мм рт.ст. на каждый сантиметр, так как верхние отделы легких растянуты сильнее нижних, которые несколько сжаты под действием собственного веса.

Рис.6. Изменение внутрилегочного (I) и внутриплеврального (II) давления в процессе дыхания

Внутриплевральное давление обусловлено эластической тягой легких или стремлением легких уменьшить свой объем. На легкое атмосферный воздух действует только с одной стороны, через воздухоносные пути, поэтому оно растянуто и прижато к внутренней стороне грудной клетки. О том, что легкие находятся в растянутом состоянии, свидетельствует факт спадения их при пневмотораксе.

Пневмотораксомназывается поступление воздуха в межплевральное пространство, возникающее при проникающих ранениях грудной клетки, нарушающих герметичность плевральной полости. При этом легкие спадаются, так как внутриплевральное давление становится одинаковым с атмосферным. У человека левая и правая плевральные полости не сообщаются, и благодаря этому односторонний пневмоторакс, например слева, не ведет к прекращению легочного дыхания правого легкого. Двусторонний открытый пневмоторакс несовместим с жизнью.

Альвеолярное давление –это давление внутри альвеол. При открытой гортани и отсутствии движения воздуха давление в альвеолах равно атмосферному, которое считается нулевым в дыхательных путях (РА=0). Во время вдоха альвеолы, следуя за грудной клеткой под влиянием отрицательного плеврального давления, расширяются и альвеолярное давление становится ниже атмосферного (-1 мм рт.ст). Этого небольшого отрицательного давления достаточно, чтобы в легкие во время спокойного вдоха вошло 0,5 л воздуха. Во время выдоха происходит сдвиг альвеолярного давления в другую сторону (+1 мм рт.ст).

Транспульмональное давление –это разница между альвеолярным и внутриплевральным давлением. Оно является мерой эластических сил в легких.

Контрольные вопросы

1. Что такое плевральное давление, чему оно равно при вдохе и выдохе ?

2. Что такое пневмоторакс ?

Читайте также:  Внутричерепное давление при бодибилдинге

3. Как изменяется альвеолярное давление при вдохе и выдохе ?

Источник

Давление в плевральной полости, его происхождение, изменение при дыхании и роль в механизме внешнего дыхания. Опыт Дондерса. Пневмоторакс.

Механизм внешнего дыхания. Внешнее дыхание — газообмен между организмом и окружающим его атмосферным воздухом .Внешнее дыхание представляет собой ритмический процесс, частота которого у здорового взрослого человека составляет 16-20 циклов в 1 мин. Основная задача внешнего дыхания заключается в поддержании постоянного состава альвеолярного воздуха — 14% кислорода и 5% углекислого газа.

Несмотря на то, что легкие не сращены с грудной стенкой, они повторяют ее движения. Это объясняется тем, что между ними имеется замкнутая плевральная щель. Изнутри стенка грудной полости покрыта париетальным листком плевры, а легкие ее висцеральным листком. В межплевральной щели находится небольшое количество серозной жидкости. При вдохе объем грудной полости возрастает. А так как плевральная изолирована от атмосферы, то давление в ней понижается. Легкие расширяются, давление в альвеолах становится ниже атмосферного. Воздух через трахею и бронхи поступает в альвеолы. Во время выдоха объем грудной клетки уменьшается. Давление в плевральной щели возрастает, воздух выходит из альвеол. Движения или экскурсии легких объясняются колебаниями отрицательного межплеврального давления.Давление в плевральной полости во время дыхательной паузы ниже атмосферного давления на 3—4 мм рт.ст., т.е. отрицательное. Это вызвано эластической тягой легких к корню, создающей некоторое разрежение в плевральной полости. Это сила, с которой легкие стремятся сжаться к корням, противодействуя атмосферному давлению. Она обусловлена упругостью легочной ткани, которая содержит много эластических волокон. Кроме того, эластическую тягу увеличивает поверхностное натяжение альвеол. Во время вдоха давление в плевральной полости еще больше уменьшается за счет увеличения объема грудной клетки, а значит, отрицательное давление возрастает. Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха — 1-2 мм рт. ст., к концу спокойного выдоха — 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст., к концу максимального вдоха — 15-20 мм рт. ст.Во время выдоха объем грудной клетки уменьшается, одновременно возрастает давление в плевральной полости, причем в зависимости от ин-тенсивности выдоха оно может стать положительным.

Пневмоторакс. В случае повреждения грудной клетки в плевральную по-лость входит воздух. При этом легкие сжимаются под давлением вошедшего воздуха вследствие эластичности ткани легких, поверхностного натяжения альвеол. В результате во время дыхательных движений легкие не способны следовать за грудной клеткой, при этом газообмен в них уменьшается или полностью прекращается. При одностороннем пневмотораксе дыхание только одним легким на неповрежденной стороне может обеспечить дыхательную потребность при отсутствии физической нагрузки. Двусторонний пневмоторакс делает невозможным естественное дыхание, в этом случае единственным способом сохранения жизни является искусственное дыхание.

Динамический стереотип

Особенно сложным видом работы ЦНС является стереотипная условно-рефлекторная деятельность, или, как ее называл И. П. Павлов, — динамический стереотип.

Динамический стереотип, или системность в работе коры, заключается в следующем. В процессе жизни (ясли, сад, школа, работа) на человека в определенном порядке действуют различные условные и безусловные раздражители, поэтому у индивидуума создается определенный стереотип реакций коры на всю систему раздражителей. Условный сигнал воспринимается не как изолированный раздражитель, а как элемент определенной системы сигналов, находящийся в связи с предыдущим и последующими раздражителями. Поэтому работа по новой системе (например, поступление молодого

человека в университет) приводит к ломке старых и выработке новых стереотипов реакций в зависимости от условий. Выработка новых динамических стереотипов более быстро осуществляется у молодых организмов. У детей до трех лет они отличаются наибольшей прочностью. Поэтому в данном возрасте, а также у пожилых людей ломка сложившихся стереотипов иногда приводит к возникновению психологического дискомфорта. Это может пагубно отразиться на здоровье, особенно пожилых (например, внезапное увольнение по сокращению штатов).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник

Adblock
detector