Меню

Давление воздушной оболочки на поверхность земли называется

Давление воздушной оболочки Земли: одна атмосфера в Паскалях

Все живые существа на Земле не замечают давления, которое оказывает на них грандиозная воздушная оболочка нашей планеты. Причина в том, что они с самого рождения привыкли к воздействию на них атмосферы, а организмы их приспособлены к нему биологически.

Меж тем подобное газообразное облако на самом деле имеет немалый вес. Оно удерживается силой тяжести планеты, благодаря чему не улетучивается в бескрайний космос, простираясь ввысь на тысячу километров. И это значит, что воздушная оболочка оказывает давление на все, находящееся на поверхности земного шара. Сколько же составляет одна атмосфера в Паскалях? Выразить давление воздуха в цифрах ученым удалось еще в XVII веке.

Атмосферное давление

В Регенсбурге в 1654 году Отто фон Герике продемонстрировал императору Фердинанду III и своим ученым собратьям зрелищный опыт. Немецкий физик взял два медных полых полушария, небольших по величине (в диаметре около 35,6 см). Затем плотно прижал их друг к другу, соединив кожаным кольцом, и откачал воздух изнутри посредством вставной трубки и насоса. После чего полушария невозможно было разъединить. Более того, это не смогли сделать шестнадцать лошадей, привязанных к железным кольцам с двух концов с каждой стороны образовавшейся сферы.

Этот эксперимент продемонстрировал миру действие на окружающие предметы давления. Именно эта сила настолько сдавила обе части сферы. А значит, величина ее воистину впечатляющая. Через два года замечательный опыт был повторен в Магдебурге. Там сферу пытались разорвать уже 24 лошади, но с тем же успехом. Указанные полушария, используемые во время эксперимента, вошли в историю под называнием магдебургских. Они до сих пор хранятся в немецком музее.

Одна атмосфера в Паскалях

Как рассчитать давление газообразной мантии планеты? Не было бы ничего проще, если бы с точностью оказались известны плотность воздуха и высота воздушной оболочки. Но в XVII веке ученые еще не могли знать подобные вещи. Однако прекрасно справились с указанной задачей. И это впервые сделал ученик Галилея — итальянец Торричелли.

Он взял метровой длины стеклянную трубку и наполнил ртутью, предварительно запаяв один из концов. А открытую часть опустил в сосуд с тем же веществом. При этом часть ртути из трубки устремилась вниз. Однако, вылилась не вся. А высота оставшегося столбика составила около 760 мм. Именно этот опыт позволил впоследствии легко рассчитать: сколько Паскалей в одной атмосфере. Это число примерно составляет 101 300 Па. Именно такова величина нормального атмосферного давления.

Объяснение опыта Торричелли

Давление атмосферы оказывает действие на все земные тела. Но оно незаметно, потому что уравновешивается действием воздуха, находящегося в самих предметах и живых организмах. Эксперимент с магдебургскими полушариями красноречиво показал, что бы происходило, если бы газ не имел свойства проникать практически везде. В образовавшейся сфере было искусственно создано безвоздушное пространство. Вследствие чего она и оказалась необыкновенно прочна и неразделима, сдавливаемая со всех сторон одной атмосферой, в Паскалях величина давления которой, как нам уже известно, весьма значительна.

Эти же законы заложены в основу действия насосов. В образовавшееся безвоздушное пространство устремляется жидкость. Она поднимается до тех самых пор пока существующие давление воздуха и вещества не уравновесят друг друга. А высота столбика зависит от плотности жидкости.

Зная это, Торричелли измерил давление, создаваемое одной атмосферой. В Паскали эту величину он перевести, конечно же, еще не мог. Это сделали позже. А потому он измерил ее в миллиметрах ртутного столба. Известно, что в подобных единицах атмосферное давление принято измерять и в наше время.

Как перевести атмосферы в Паскали

Француз Блез Паскаль (его портрет чуть выше), именем которого и названы единицы измерения давления, узнав об экспериментах Торричелли, повторил подобные опыты на разных высотах, используя, помимо ртути, воду и другие жидкости. И этим окончательно доказал наличие и действие атмосферного давления на земные тела и вещества, хотя сомневающихся в те времена было много.

Ниже показано, как давление в атмосферах перевести в Паскали и в другие единицы измерения.

Эта величина не постоянна и зависит от многих показателей. Прежде всего, от высоты над уровнем моря. Как доказал Паскаль, чем выше поднимаешься на вершину горы, тем давление становится меньше. Это легко объяснимо. Ведь глубина воздушной оболочки уменьшается, как и ее плотность. И уже на высоте примерно равной 5,5 км показатели давления вдвое снижаются. А если подняться на 11 км, то эта величина уменьшится в четыре раза.

Кроме того, атмосферное давление зависит от погоды. Потому-то этот показатель и считается значимым при ее прогнозах. К примеру, чем выше давление летом, тем больше вероятность того, что в этот день солнце порадует своими лучами и не будет осадков.

Источник

Как называется воздушная оболочка Земли? Строение, физические свойства и состав атмосферы

Ни для кого не секрет, что воздух — крайне важная часть биосферы. Ведь именно его уникальный состав обеспечивает возможность жизни на планете. Но как называется воздушная оболочка Земли? Что она собой представляет и чем уникальна? Каков ее химический состав и физические свойства? Эти вопросы интересуют многих.

Как называется воздушная оболочка Земли?

Известно, что жизнь на Земле возможна во многом благодаря уникальному составу воздуха. И газовая оболочка носит название атмосферы. Эта часть биосферы полностью окружает планету и удерживается вокруг небесного тела благодаря гравитации.

Естественно, эта оболочка имеет определенные химические и физические свойства. Что же касается границ, то четко их провести невозможно. Ближе к земной поверхности атмосфера контактирует с литосферой и гидросферой. А вот определить, где заканчивается газовая оболочка и начинается открытый космос, крайне тяжело. На сегодняшний день границу принято проводить на высоте 100 км, где находится так называемая линия Кармана — в этом районе аэронавтика уже невозможна.

Атмосфера — воздушная оболочка Земли, значение которой трудно переоценить. Ведь не стоит забывать, что практически все небесные тела находятся под воздействием ионизирующих и ультрафиолетовых излучений, которые губительны для живых организмов. Именно в газовой оболочке эти лучи нейтрализуются.

Теория возникновения атмосферы

На самом деле, множество людей задается вопросом о том, как образовалась воздушная оболочка Земли. Ответ на этот вопрос вряд ли может быть точным, так как на сегодняшний день существует несколько разных теорий о происхождении атмосферы.

Согласно самой распространенной гипотезе, первичная атмосфера образовалась четыре миллиарда лет назад из легких газов, а именно — гелия и водорода, которые были захвачены из межпланетного пространства. В связи с высокой вулканической активностью в дальнейшем создалась вторичная газовая оболочка, которая была насыщена углекислым газом, водяным паром и аммиаком.

Третичная атмосфера была образована благодаря многим процессам — химические реакции (например, грозовые разряды), ультрафиолетовое воздействие, утечка гелия и водорода обратно в межпланетное пространство.

Химический состав атмосферы

Кроме того, воздушная оболочка Земли включает в себя и другие компоненты — это углекислый газ, водород, аргон, гелий, ксенон, метан, окиси серы и азота, озон, аммиак.

Строение воздушной оболочки Земли

Атмосферу принято разделять на несколько основных слоев, каждый из которых имеет разные физические и химические характеристики.

  • Тропосфера — самый близкий слой к поверхности земли. Именно здесь сконцентрировано 80 % всего воздуха. И именно здесь возможна жизнедеятельность человека. Кстати, в этом слое сосредоточена почти вся атмосферная вода (90 %). Здесь образуются облака и осадки. Тропосфера простирается на 18 км от поверхности земли. С подъемом вверх температура здесь снижается.
  • Стратосфера (12-50 км) — слой, который считается наиболее спокойной частью атмосферы. Именно здесь находится озоновый защитный слой.
  • Термосфера — часть атмосферы, верхняя граница которой находится примерно на 700-800 км. Здесь температура с подъемом начинает резко повышается, и в некоторых участках составляет около 1200 градусов по Цельсию. В границах этого слоя находится так называемая ионосфера, где воздух сильно ионизируется под воздействием солнечной радиации.
  • Экзосфера — зона рассеяния, которая на высоте 3000 км переходит в космическое пространство. Воздух здесь насыщен легкими газами, в частности водородом и гелием.
Читайте также:  Эпюра гидростатического давления на криволинейную поверхность

Основные физически характеристики атмосферы

Безусловно, физические свойства воздуха крайне важны. Например, зная их, можно определить, как атмосфера воздействует на человеческий или любой другой живой организм. Кроме того, измерение физических параметров просто необходимо для определения оптимальных характеристик летательных аппаратов, самолетов и т. д. В частности, во внимание берутся следующие физические показатели:

  • Температура воздуха измеряется по следующей формуле: t1 = t – 6,5H (здесь t — температура воздуха у земной поверхности, а Н — высота).
  • Плотность воздуха — это масса воздуха на кубический метр.
  • Давление, которое может быть измерено как в Паскалях, так и в атмосферах.
  • Влажность воздуха демонстрирует количество воды в единице воздуха. Следует отметить, что нулевая влажность возможна только в лабораторных условиях. Чем выше этот показатель, тем ниже плотность воздуха, и наоборот.

Кстати, наука, дающая ответ на вопросы о том, как называется воздушная оболочка Земли, каковы ее свойства и характеристики, — это метеорология. Ученые занимаются не только изучением атмосферы, но также следят за ее постоянными изменениями, которые влияют на погоду и климат.

Атмосфера и ее значение

Важность газовой оболочки Земли очень трудно переоценить. Ведь всего несколько минут без воздуха приводят к потере сознания, гипоксии и необратимым повреждениям мозга. Только благодаря удивительному составу атмосферы живые организмы могут получать необходимый им кислород.

Кроме того, воздушная оболочка защищает поверхность планеты от вредных космических излучений. Вместе с тем, сквозь атмосферу проходит достаточное количество ультрафиолетовых лучей, которые согревают Землю. Ученые говорят, что уменьшение ультрафиолета приведет к снижению общей температуры и замерзанию. Кроме того, под воздействием солнечных лучей (в разумном количестве) в кожных тканях человека образуется витамин Д.

Озоновый слой и его значение

В стратосфере, на высоте 12-50 км от поверхности земли, находится озоновый слой. Эта часть атмосферы была открыта в 1912 году французскими учеными Ш. Фабри и А. Буиссоном.

Озон представляет собой бесцветный газ с резким характерным запахом. Он состоит из трех атомов оксигена. Именно эта часть газовой оболочки обеспечивают защиту поверхности земли от опасных космических излучений.

К сожалению, в связи с техническим и промышленным прогрессом, в воздушной оболочке Земли повысилось количество вредных веществ, которые постепенно разрушают озоновый слой. Так называемые озоновые дыры — крайне опасная проблема.

Загрязнение атмосферы: парниковый эффект и кислотные дожди

К сожалению, постоянное загрязнение воздуха, которое связано преимущественно с развитой промышленностью, приводит к массе ухудшений. К таким опасным изменениям относят так называемый парниковый эффект. Дело в том, что земные тела излучают волны преимущественно инфракрасного спектра — они далеко не всегда могут проникать сквозь атмосферу. Повышение концентрации парниковых газов, которые поглощают инфракрасные излучения (водяной пар, углекислый газ), приводит к повышению общей температуры в нижних слоях атмосферы, что, соответственно, влияет на климат.

Кислотные дожди — еще один результат промышленного загрязнения воздушной оболочки Земли. Оксиды серы и азота, которые выбрасываются в воздух тепловыми электростанциями, автомобилями, металлургическими заводами и некоторыми другими предприятиями, могут вступать в реакцию с водяным паром атмосферы — под воздействием солнечного излучения здесь образуются кислоты, которые выпадают вместе с другими осадками.

Источник

Давление. Атмосферное давление. Закон Паскаля. Закон Архимеда

1. Твёрдые тела оказывают давление на опору. На тело, стоящее на опоре, действуют сила тяжести ​ \( \vec_т=m\vec \) ​ и сила реакции опоры ​ \( \vec \) ​ (рис. 55).

Если опора неподвижна, то это тело действует на неё с силой ​ \( \vec \) ​, называемой силой давления и равной в этом случае по модулю силе тяжести: ​ \( F=mg \) ​.

Физическая величина, равная отношению силы давления ​ \( F \) ​ к площади поверхности ​ \( S \) ​ называется давлением и обозначается буквой ​ \( p \) ​:

Единицей давления является 1 паскаль (1 Па):

Более крупная единица давления — килопаскаль.

Как видно из формулы, давление на поверхность зависит от площади поверхности. Так, человек проваливается в снег при ходьбе по нему и спокойно перемещается на лыжах. В том случае, когда нужно увеличить давление на твёрдое тело, используют заострённые предметы, например, булавки, гвозди, ножи и т.п.

2. Жидкости и газы тоже оказывают давление на сосуд, в котором они находятся. Так, молекулы газа, находящегося в воздушном шаре, непрерывно движутся и при этом соударяются со стенками шара. Эти удары и вызывают давление газа на стенки шара и любого другого сосуда, в котором газ находится. Удар одной молекулы слаб, но внутри шара находится огромное число молекул, поэтому
их суммарное давление на стенки шара ощутимо.

Чем выше температура газа, чем с большей скоростью движутся молекулы и чем чаще и сильнее ударяются они о стенки сосуда, тем, следовательно, давление газа на стенки сосуда больше.

Если уменьшить объём газа в сосуде, не меняя его массу, то число молекул в единице объёма увеличится, увеличится и плотность газа. Число ударов молекул о стенки сосуда при этом возрастёт, следовательно, увеличится давление газа. При увеличении объёма газа при той же массе уменьшится его плотность и число ударов молекул о стенки сосуда. Давление уменьшится.

Таким образом, давление газа тем больше, чем выше его температура и меньше объём при неизменной массе. При повышении температуры и уменьшении объёма молекулы с большей силой и чаще ударяются о стенки сосуда.

3. Опыт показывает, что давление, производимое на жидкость или газ, передаётся по всем направлениям. Если шар с отверстиями, соединённый с трубкой, внутри которой находится поршень, наполнить водой, а затем нажать на поршень, то можно заметить, что вода брызнет из всех отверстий. При этом струйки вытекающей воды будут примерно одинаковыми. Это говорит о том, что давление, которое мы создаём, действуя на воду, передаётся водой по всем направлениям одинаково. Тот же эффект можно наблюдать, если шар заполнить дымом. Дым тоже будет передавать производимое на него давление по всем направлениям одинаково.

То, что газы и жидкости передают давление по всем направлениям, объясняется подвижностью их молекул. Она проявляется в том, что слои и частицы жидкостей и газов могут свободно перемещаться друг относительно друга но разным направлениям. Благодаря подвижности молекул давление, которое оказывает поршень на ближайший к нему слой, передаётся последующим слоям. Молекулы газа и жидкости движутся хаотически, поэтому и их действие распределяется равномерно по всему объёму шара. Таким образом, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения в каждую точку жидкости или газа. Это утверждение называется законом Паскаля.

4. Закон Паскаля находит применение в гидравлических машинах.

Основной частью любой гидравлической машины являются два соединенных между собой цилиндра разного диаметра. Цилиндры заполнены жидкостью, чаще всего маслом, и в них помещены поршни.

Пусть на большой поршень площадью ​ \( S_1 \) ​ действует сила ​ \( F_1 \) ​ (рис. 56). Эта сила будет оказывать на поршень давление ​ \( p_1 \) ​: ​ \( p_1=F_1/S_1 \) ​.

Это давление \( p_1 \) будет передаваться жидкости, находящейся под большим поршнем. Согласно закону Паскаля, давление, производимое на жидкость или газ, передаётся по всем направлениям без изменения. Следовательно, давление будет передаваться жидкости, находящейся под меньшим поршнем, и на меньший поршень со стороны жидкости будет действовать давление ​ \( p_2=p_1 \) ​. Соответственно, на меньший поршень со стороны жидкости будет действовать сила ​ \( F_2=p_2S_2 \) ​, направленная вверх. Откуда ​ \( p_2=F_2/S_2 \) ​.

Читайте также:  Как понижается давление после приема таблеток

Чтобы жидкость и поршни находились в равновесии, на меньший поршень следует подействовать силой, равной по модулю силе ​ \( F_2 \) ​, направленной вертикально вниз. Для этого можно, например, положить на поршень груз.

Так как ​ \( p_1=p_2 \) ​, то ​ \( F_1/S_1=F_2/S_2 \) ​ или ​ \( F_1/F_2=S_1/S_2 \) ​.

Таким образом, гидравлическая машина даёт выигрыш в силе во столько раз, во сколько раз площадь большего поршня больше площади меньшего поршня.

Это означает, что с помощью некоторой силы, приложенной к малому поршню гидравлической машины, можно уравновесить существенно большую силу, приложенную к большему поршню.

Гидравлическая машина, так же как и любой простой механизм, даёт выигрыш в силе, но не даёт выигрыша в работе.

5. Твёрдые тела производят давление на опору вследствие действия на них силы тяжести. Поскольку на жидкости тоже действует сила тяжести, то и жидкости оказывают давление на дно сосуда. Это можно доказать экспериментально.

Если в трубку, дно которой затянуто плёнкой, налить воду, то плёнка заметно прогнётся. Это происходит потому, что на воду действует сила тяжести, и каждый слой воды давит на слои воды, лежащие ниже, и соответственно на дно сосуда.

Давление производится жидкостью не только на дно сосуда, оно существует внутри жидкости на любой её глубине. При этом производимое давление передаётся по закону Паскаля по всем направлениям одинаково.

Если в трубку с дном, затянутым плёнкой, добавить воды, то плёнка прогнётся сильнее. Это происходит потому, что увеличивается вес воды и соответственно давление воды на дно трубки. Таким образом, давление жидкости на дно сосуда тем больше, чем больше высота столба жидкости.

Если теперь в трубку до той же высоты налить масло, плотность которого меньше плотности воды, то плёнка прогнётся меньше, чем в том случае, когда в ней была вода (рис. 57 а). Это означает, что давление на дно сосуда тем больше, чем больше плотность жидкости.

Сила ​ \( F \) ​, с которой жидкость давит на дно, равна её весу ​ \( P \) ​. Вес жидкости ​ \( P \) ​ равен произведению её массы ​ \( m \) ​ и ускорения свободного падения ​ \( g \) ​: ​ \( F=P=mg \) ​.

Масса жидкости ​ \( m \) ​ равна произведению её плотности ​ \( \rho \) ​ и объёма ​ \( V \) ​: ​ \( m=\rho V \) ​, где ​ \( V=Sh \) ​ (рис. 57 б). Тогда ​ \( F=mg=\rho V\!g=\rho Shg \) ​.

Разделив вес жидкости (силу, с которой она давит на дно сосуда) на площадь дна, получим давление жидкости ​ \( p \) ​: ​ \( p=F/S \) ​ или ​ \( p=\rho gSh/S \) ​, т.е. ​ \( p=\rho gh \) ​

Давление жидкости на дно и стенки сосуда равно произведению плотности жидкости, ускорения свободного падения и высоты столба жидкости.

6. Два или более сосудов, соединённых между собой у дна, называются сообщающимися сосудами. Примерами сообщающихся сосудов могут служить гидравлические машины и жидкостный манометр. Самым простым сообщающимся сосудом, которым вы пользуетесь каждый день, является чайник.

Если две стеклянные трубки соединить резиновой трубкой (рис. 57 в), то получатся сообщающиеся сосуды. Наливая в одну трубку воду, можно заметить, что она будет перетекать и в другую трубку. При этом уровни воды в трубках будут все время одинаковы.

Можно поднять одну из трубок или наклонить ее, в любом случае друг относительно друга уровни воды или любой другой жидкости останутся одинаковыми, т.е. будут лежать в одной и той же горизонтальной плоскости.

Можно сделать вывод: в сообщающихся сосудах поверхности однородной жидкости всегда устанавливаются на одном уровне.

Это верно при условии, что давление на поверхность жидкости одинаково. При использовании сообщающихся сосудов в качестве жидкостного манометра именно по разности уровней жидкости в трубках можно судить о значении давления.

Объяснить то, что в сообщающихся сосудах однородная жидкость устанавливается на одном уровне, можно следующим образом. Жидкость в сосудах не перемещается, следовательно, её давления в сосудах на одном уровне, в том числе и на дно, одинаковы. Она имеет одинаковую плотность, т.к. она однородная. Следовательно, в соответствии с формулой ​ \( p=\rho gh \) ​ высоты жидкости тоже одинаковы.

Если в одну трубку налить воду, а в другую масло, плотность которого меньше плотности воды, то уровень воды будет ниже, чем уровень масла в другой трубке (рис. 58).

Это объясняется тем, что давление жидкости на дно сосуда зависит от высоты столба жидкости и от её плотности. При одинаковом давлении, чем больше плотность жидкости, тем меньше высота её столба. Поскольку плотность масла меньше плотности воды, то столб масла выше столба воды. Жидкости, имеющие разную плотность, устанавливаются в сообщающихся сосудах на разных уровнях; во сколько раз плотность одной жидкости больше плотности другой, во столько раз меньше высота её столба.

7. Земля окружена воздушной оболочкой — атмосферой. Воздух, как и газы, входящие в состав атмосферы, имеет массу. Соответственно, на него действует сила тяжести, и он оказывает давление на поверхность Земли.

Давление воздушной оболочки на поверхность Земли и находящиеся на ней тела называется атмосферным давлением.

В существовании атмосферного давления легко убедиться на опытах. Если опустить в воду трубку с плотно прилегающим к её стенкам поршнем и поднимать поршень вверх, то вода будет подниматься по трубке вслед за поршнем.

Это происходит потому, что при подъёме поршня между ним и поверхностью воды образуется разреженное пространство. На поверхность воды в сосуде действует атмосферное давление, которое в соответствии с законом Паскаля передаётся по всем направлениям, в том числе и в направлении трубки. Оно и заставляет воду подниматься за поршнем.

Для расчёта атмосферного давления нельзя использовать формулу, по которой рассчитывается давление столба жидкости, так как для этого нужно знать высоту атмосферы и плотность воздуха. Но атмосфера не имеет определённой границы, а плотность воздуха изменяется с высотой. Однако атмосферное давление можно измерить.

Опыт по измерению атмосферного давления был предложен итальянским ученым Торричелли в XVII в. Стеклянную трубку длиной 1 м, запаянную с одного конца, заполнили ртутью. Закрыв другой конец трубки, её перевернули и опустили в сосуд с ртутью. Затем этот конец трубки открыли, и часть ртути вылилась из неё в сосуд, а часть осталась в трубке. Высота столба ртути, оставшейся в трубке, оказалась равной примерно 760 мм.

Объясняется это следующим образом: атмосферное давление действует на ртуть в сосуде, это давление передаётся по всем направлениям и действует на ртуть в основании трубки снизу вверх. Это давление уравновешивает давление столба ртути в трубке. Таким образом, атмосферное давление равно давлению, которое оказывает у основании трубки столб ртути высотой 760 мм. Это давление называют нормальным атмосферным давлением.

Если атмосферное давление выше нормального, то высота столба ртути больше, если — меньше нормального, то столб ртути опустится ниже.

Нормальное атмосферное давление равно 101 300 Па.

Читайте также:  Испытания в камерах пониженного давления

Атмосферное давление чаще выражают не в паскалях, а в миллиметрах ртутного столба (мм рт.ст.). 1 мм рт.ст. = 133,3 Па.

Если к трубке в опыте Торричелли прикрепить шкалу и проградуировать её в миллиметрах, то получим прибор — ртутный барометр, с помощью которого можно измерять атмосферное давление.

В быту и технике для измерения атмосферного давления применяют более удобный в обращении металлический барометр, называемый анероидом.

Атмосферное давление зависит от высоты. Это объясняется тем, что воздух хорошо сжимаем, так же как и все газы. Верхние слои воздуха давят на лежащие ниже и сжимают их, соответственно плотность слоёв воздуха, а следовательно и давление, у поверхности Земли больше, чем на некоторой высоте от неё.

Так, в местности, лежащей на уровне моря, давление равно примерно 760 мм рт. ст., т.е. нормальному атмосферному. В горах оно выше. Измерения показывают, что на каждые 12 м подъёма атмосферное давление уменьшается примерно на 1 мм рт.ст.

8. Если подвешенный к пружине динамометра шарик опустить в сосуд с водой, то можно заметить, что показание динамометра уменьшится.

Точно так же можно изменить показания динамометра, если подействовать на шарик рукой снизу вверх. Следовательно, когда шарик опустили в воду, на него, помимо силы тяжести и силы упругости пружины динамометра, стала действовать сила, направленная вверх. Эту силу называют выталкивающей или архимедовой силой.

Выталкивающая сила возникает за счёт разности давления воды на нижнюю поверхность шарика и давления на его верхнюю поверхность, поскольку давление жидкости зависит от высоты её столба.

Сила давления ​ \( F_1 \) ​, действующая на верхнюю поверхность шарика, направлена вниз, сила давления \( F_2 \) , действующая на нижнюю поверхность шарика, направлена вверх. Так как \( F_2 \) больше \( F_1 \) , то результирующая этих двух сил, являющаяся выталкивающей силой, будет направлена вверх.

Выталкивающая сила тем больше, чем больше плотность жидкости, в которую погружено тело, и чем больше объём тела, погружённого в жидкость.

Опыт показывает, что выталкивающая сила ​ \( F \) ​ может быть вычислена по формуле: ​ \( F=\rho gV \) ​, где ​ \( \rho \) ​ — плотность жидкости, в которую погружено тело, ​ \( V \) ​ — объём погружённой части тела.

Выталкивающая сила равна произведению плотности жидкости, ускорения свободного падения и объёма погружённой части тела.

Этот закон называют законом Архимеда.

В воздухе, так же как и в любом другом газе, на тело действует выталкивающая сила. Она имеет ту же природу, что и выталкивающая сила, действующая на тело в жидкости. Её происхождение обусловлено разностью давлений на нижнюю и верхнюю грани тела. Однако, поскольку плотность газа намного меньше плотности жидкости, выталкивающая сила, действующая на тело, в газе меньше, чем в жидкости. Часто при решении задач пренебрегают выталкивающей силой, действующей на тело в воздухе, и считают, что вес покоящегося тела в воздухе равен по модулю действующей на него силе тяжести.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Ребёнка везут на санках по свежевыпавшему снегу. Какие санки — с широкими или узкими полозьями — следует выбрать, чтобы не проваливаться в снег?

1) с широкими
2) с узкими
3) безразлично
4) ответ зависит от веса санок

2. Брусок в форме прямоугольного параллелепипеда положили на стол сначала узкой гранью (1), а затем — широкой (2). Сравните силы давления (​ \( F_1 \) ​ и \( F_2 \) ) и давления (​ \( p_1 \) ​ и ​ \( p_2 \) ​), производимые бруском на стол в этих случаях.

1) ​ \( F_1=F_2; p_1>p_2 \) ​
2) \( F_1=F_2; p_1

3) \( F_1 \( F_1=F_2; p_1=p_2 \)

3. Сила ​ \( F_1 \) ​, действующая со стороны жидкости на один поршень гидравлической машины, в 16 раз меньше силы ​ \( F_2 \) ​, действующей на другой поршень. Как соотносятся модули работы ​ \( (A_1) \) ​ и \( (A_2) \) этих сил, совершаемой при перемещении поршней? Трением пренебречь.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=16A_2 \)
3) \( A_2=16A_1 \)
4) \( A_1=4A_2 \)

4. В сосуды различной формы налита одна и та же жидкость. Высота уровня жидкости во всех сосудах одинакова. В каком из сосудов давление на дно наименьшее?

1) в сосуде А
2) в сосуде Б
3) в сосуде В
4) во всех сосудах одинаковое

5. Стеклянный сосуд, правое колено которого запаяно, заполнен жидкостью плотностью с (см. рисунок). Давление, оказываемое жидкостью на дно сосуда в точке Б, равно

1) ​ \( \rho gh_3 \) ​
2) \( \rho gh_1 \)
3) \( \rho g(h_1-h_2) \)
4) ​ \( \rho gh_2 \) ​

6. Атмосферное давление на вершине горы Казбек

1) меньше, чем у её подножия
2) больше, чем у её подножия
3) равно давлению у её подножия
4) может быть больше или меньше, чем у её подножия, в зависимости от погоды

7. В открытых сосудах 1 и 2 находятся соответственно ртуть и вода. Если открыть кран К, то

1) ни вода, ни ртуть перетекать не будут
2) вода начнёт перетекать из сосуда 2 в сосуд 1
3) перемещение жидкостей будет зависеть от атмосферного давления
4) ртуть начнёт перетекать из сосуда 1 в сосуд 2

8. Два однородных шара, один из которых изготовлен из стали, а другой — из олова, уравновешены на рычажных весах (см. рисунок). Нарушится ли равновесие весов,
если шары опустить в воду?

1) Равновесие весов не нарушится, так как шары одинаковой массы.
2) Равновесие весов нарушится — перевесит шар из стали.
3) Равновесие весов нарушится — перевесит шар из олова.
4) Равновесие весов не нарушится, так как шары опускают в одну и ту же жидкость.

9. Алюминиевый шар, подвешенный на нити, опущен в крепкий раствор поваренной соли. Затем шар перенесли из раствора поваренной соли в дистиллированную воду. При этом сила натяжения нити

1) может остаться неизменной или измениться в зависимости от объёма шара
2) не изменится
3) увеличится
4) уменьшится

10. Теплоход переходит из устья реки в солёное море. При этом архимедова сила, действующая на теплоход,

1) увеличится
2) уменьшится или увеличится в зависимости от размера теплохода
3) не изменится
4) уменьшится

11. Шарик, опущенный в жидкость, начинает опускаться на дно. Как по мере движения шарика в жидкости изменяются выталкивающая сила, действующая на него, вес шарика, давление жидкости? Установите соответствие между физическими величинами и характером их изменения. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) выталкивающая сила
Б) вес
B) давление жидкости

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИН
1) увеличивается
2) уменьшается
3) не изменяется

12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.

1) атмосферное давление можно рассчитать так же, как давление жидкости на дно сосуда.
2) в опыте Торричелли можно ртуть заменить водой при той же длине трубки.
3) для того, чтобы столб воды производил на дно сосуда такое же давление, что и столб керосина, его высота должна составлять 0,8 от высоты столба керосина.
4) на вершине горы атмосферное давление меньше, чем у её подножия.
5) закон Паскаля справедлив для газов, жидкостей и твёрдых тел.

Часть 2

13. Камень весит в воздухе 6 Н, а в воде 4 Н. Чему равен объём этого камня?

Источник

Adblock
detector