Меню

Давление жидкости заполненного сосуда равно давлению жидкости на дно сосуда

Гидростатический парадокс или парадокс Паскаля

Гидростатический парадокс или парадокс Паскаля — явление, при котором сила весового давления налитой в сосуд жидкости на дно сосуда может отличаться от веса налитой жидкости. В сосудах с увеличивающимся кверху поперечным сечением сила давления на дно сосуда меньше веса жидкости, в сосудах с уменьшающимся кверху поперечным сечением сила давления на дно сосуда больше веса жидкости. Сила давления жидкости на дно сосуда равна весу жидкости лишь для сосуда цилиндрической формы. Математическое объяснение парадоксу было дано Симоном Стевином в 1612 году.

Причины

Причина гидростатического парадокса состоит в том, что по закону Паскаля жидкость давит не только на дно, но и на стенки сосуда.

Если стенки сосуда вертикальные, то силы давления жидкости на его стенки направлены горизонтально и не имеют вертикальной составляющей. Сила давления жидкости на дно сосуда в этом случае равна весу жидкости в сосуде. Если же сосуд имеет наклонные стенки, давление жидкости на них имеет вертикальную составляющую. В расширяющемся кверху сосуде она направлена вниз, в сужающемся кверху сосуде она направлена вверх. Вес жидкости в сосуде равен сумме вертикальных составляющих давления жидкости по всей внутренней площади сосуда, поэтому он и отличается от давления на дно.

Опыт Паскаля

В 1648 году парадокс продемонстрировал Блез Паскаль . Он вставил в закрытую бочку, наполненную водой, узкую трубку и, поднявшись на балкон второго этажа, влил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давление в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Гидростатический парадокс и закон Архимеда

Похожий кажущийся парадокс возникает при рассмотрении закона Архимеда . Согласно распространённой формулировке закона Архимеда , на погружённое в воду тело действует выталкивающая сила, равная весу воды, вытесненной этим телом. Из такой формулировки можно сделать неверное умозаключение, что тело не сможет плавать в сосуде, не содержащем достаточное количество воды для вытеснения.

Однако на практике тело может плавать в резервуаре с таким количеством воды, масса которой меньше массы плавающего тела. Это возможно в ситуации, когда резервуар лишь ненамного превышает размеры тела. Например, когда корабль стоит в тесном доке, он остаётся на плаву точно так же, как в открытом океане, хотя масса воды между кораблём и стенками дока может быть меньше, чем масса корабля.

Объяснение парадокса заключается в том, что архимедова сила создаётся гидростатическим давлением, которое зависит не от веса воды, а только от высоты её столба. Как в гидростатическом парадоксе на дно сосуда действует сила весового давления воды, которая может быть больше веса самой воды в сосуде, так и в вышеописанной ситуации давление воды на днище корабля может создавать выталкивающую силу, превышающую вес этой воды.

Более корректной формулировкой закона Архимеда является следующая: на погружённое в воду тело действует выталкивающая сила, эквивалентная весу воды в погружённом объёме тела.

Источник

§ 40. Расчёт давления жидкости на дно и стенки сосуда

Рассмотрим, как можно рассчитать давление жидкости на дно и стенки сосуда. Решим сначала задачу для сосуда, имеющего форму прямоугольного параллелепипеда (рис. 112).

Читайте также:  Где находится датчик давления масла на тойота цинос

Сила F, с которой жидкость, налитая в этот сосуд, давит на его дно, равна весу Р жидкости, находящейся в сосуде. Вес жидкости можно определить, зная её массу m. Массу, как известно, можно вычислить по формуле m = ρV. Объём жидкости, налитой в выбранный нами сосуд, легко рассчитать. Если высоту столба жидкости, находящейся в сосуде, обозначить буквой h, а площадь дна сосуда S, то V=Sh.

Масса жидкости m = ρV, или m = ρSh.

Вес этой жидкости Р = gm, или Р = gρSh.

Так как вес столба жидкости равен силе, с которой жидкость давит на дно сосуда, то, разделив вес Р на площадь S, получим давление жидкости р:

Мы получили формулу для расчёта давления жидкости на дно сосуда. Из этой формулы видно, что давление жидкости на дно сосуда зависит только от плотности и высоты столба жидкости.

Следовательно, по выведенной формуле можно рассчитывать давление жидкости, налитой в сосуд любой формы. Кроме того, по ней можно вычислить и давление на стенки сосуда. Давление внутри жидкости, в том числе давление снизу вверх, также рассчитывается по этой формуле, так как давление на одной и той же глубине одинаково по всем направлениям.

При расчёте давления по формуле р = gρh надо плотность ρ выражать в килограммах на кубический метр (кг/м 3 ), а высоту столба жидкости h — в метрах (м), g = 9,8 H/кг, тогда давление будет выражено в паскалях (Па).

П р и м е р. Определите давление нефти на дно цистерны, если высота столба нефти 10 м, плотность 800 кг/м 3 .

Запишем условие задачи и решим её.

Вопросы

1. Выведите формулу для расчёта давления жидкости на дно сосуда, имеющего форму прямоугольного параллелепипеда.
2. От каких величин и как зависит давление жидкости на дно сосуда?
3. По какой формуле рассчитывают давление жидкости на стенки сосуда, давление внутри жидкости?

Упражнение 17

1. Определите давление на глубине 0,6 м в воде, керосине, ртути.

2. Вычислите давление воды на дно одной из глубочайших морских впадин — Марианской, глубина которой 10 900 м. Плотность морской воды 1030 кг/м 3 .

3. На рисунке 113 изображена футбольная камера, соединённая с вертикально расположенной стеклянной трубкой. В камере и трубке находится вода. На камеру положена дощечка, а на неё — гиря массой 5 кг. Высота столба воды в трубке 1 м. Определите площадь соприкосновения дощечки с камерой.

Читайте также:  Как посмотреть давление в котле протерм гепард

Задание

1. Возьмите высокий сосуд. В боковой поверхности его на разной высоте от дна сделайте три небольших отверстия. Закройте отверстия спичками и наполните сосуд водой. Откройте отверстия и проследите за струйками вытекающей воды (рис. 114). Почему вода вытекает из отверстий? Из чего следует, что давление увеличивается с глубиной?

2. Налейте в стеклянный сосуд (стакан или банку) произвольное количество воды. Сделайте необходимые измерения и рассчитайте давление воды на дно сосуда.

Источник

Какое давление оказывается на дно сосуда, содержащего керосин?

Для вычисление давления на дно сосуда, нужно воспользоваться формулой P = pgh. Здесь

P- искомое давление

p — плотность керосина

g — ускорение свободного падения

h — высота слоя керосина

p и g — величины известные, а вот не зная высоты слоя керосина, ответить точно на Ваш вопрос не получится.

Какое давление оказывает столб воды высотой 10 метров?

Гидростатическое давление, создаваемое столбом жидкости, рассчитывается по формуле:

P= ρ *g*h, где ρ — плотность жидкости, h — высота столба жидкости, g — ускорение свободного падения. Для воды ρ =1000 кг/м^3, g=10 м/с^2, поэтому P=1000*10*10=10000 Па = 100 кПа.

1 3 · Хороший ответ

Объясните чайнику: если до Большого взрыва Вселенная была бесконечно мала, то как называлось то пространство, которое ее окружало?

Разум цепляется за привычное. Например, мы привыкли, что все тела падают вниз. Привыкли настолько, что в Англии, на родине Ньютона, еще в девятнадцатом веке огромной общественной популярностью пользовалась книга, в которой «доказывалось», что Земля — плоская, ведь иначе мы бы с нее упали. Раз она плоская, у нее должен быть край. Однако, путешествие Магеллана показало — если плыть все время на запад, то снова приплывешь в Европу, только уже с востока. Итак, Земля — шар, а с тем, что люди на другой стороне ходят «вверх ногами», придется смириться, хоть это и противоречит «здравому смыслу».

Ну, «здравый смысл» с тех пор кое-как примирился с законом всемирного тяготения, но теперь есть новая задача — понять, как Вселенная может быть ограниченной в объеме и при этом не иметь «краев» и чего-то «вне». Что ж, лучшая аналогия — это старые игры, где, выходя за конец экрана, какой-нибудь пэкмен, или диггер, или змейка, или Марио оказывались с противоположного. Для них, таким образом, края экрана не существовало.

Ограниченная по объему трехмерная вселенная — это нечто подобное. Представьте себе: вы находитесь в комнате, у которой как будто две двери в противоположных стенах. Вы открываете дверь и видите такую же комнату и себя со спины, открывающего дверь в следующей стене, за которой видна еще одна комната и еще один вы, и так далее. И за спиной у вас скрипнула дверь — на самом деле та же самая, потому что дверь — одна. И происходит это не потому, что существует бесконечное число вас, а потому что вселенная зациклена сама на себя — просто свет делает несколько кругов по этой вселенной прежде чем достичь ваших глаз. Если в этой нашей вселенной сделать скорость света, к примеру, один метр в секунду, то вы будете видеть себя в другой комнате уже с задержкой в несколько секунд. Теперь добавим еще двери, точнее, одну дверь двум другим стенам комнаты. А теперь — люк в полу и потолке с теми же эффектами.

Читайте также:  Насос топливный высокого давления hover h5 дизель

А теперь — уберем стены, пол и потолок! И увидим многократные копии себя же через равные промежутки пространства. Хотя на самом деле эти копии настолько же реальны, насколько ваше отражение в зеркале — то, что мы видим в зеркале отраженную комнату, отнюдь не значит, что есть еще одна комната.

Поздравляю! Вот вы и очутились во вселенной с ограниченным объемом, но без краев и чего-то «вне». Это лишь один из вариантов, тороидальный. В сферической вселенной вы бы видели размытый образ себя во всем поле зрения — причем, считая, что угол обзора у нас 180°, вы бы видели в упор свой затылок, а в нижнем краю зрения — макушку, в верхнем — подошвы обуви, а по бокам — уши. Но это уже мелочи.

Почему так не происходит в нашей Вселенной? Дело в том, что она расширяется, и достаточно удаленные ее участки улетают от нас быстрее скорости света. В общем, даже если вселенная конечна, свет, испущенный нами или отраженный от нас, просто не имеет возможности к нам возвратиться. Это — большой вариант комнаты.

А теперь рассмотрим противоположный сценарий. Будем сжимать нашу комнату без стен. Вот нам уже в ней неуютно. Вот вы в нее уже не помещаетесь, вас прижимает носом к своему собственному затылку, который вы видите перед собой, и вы чувствуете затылком, как к нему прижало ваш же нос. Вот комната становится размером с атомное ядро. И вот мы приходим в состояние «сразу» после Большого Взрыва. «Сразу» заключено в кавычки, потому что время — это тоже лишь измерение пространства. Так что нет не только «вне» вселенной, но и «до» Большого Взрыва. Ну, то есть, в одной из моделей.

Источник

Adblock
detector