Меню

Где находится регулировка давления наддува

Renault Scenic 1.5 dci › Бортжурнал › Регулировка давления наддува или гадский «грибок»

Не давала покоя мне работа турбины с самой покупки автомобиля. Ну не верил я в то, что машина такая тупая снизу, да и разгон не сказать что прям адский. Он неплох, но как-то вяловат. Пятой точкой чувствовал, что должно быть иначе. Турбина работает, это слышно по свисту, люфтов крыльчаток нету, но всё как-то не айс.
Электромагнитный клапан управления геометрией турбины жужжит, т.е. тоже работает. Джекичан не горит, клипом ошибок нету, сравнить не с чем. Ну и ездил я так почти 3 года…

И тут вчера, покурив разные форумы, почитав все за и против, вооружился клипом, зарядил свой старенький бук для клипа, прыгнул в машину и поехал на ровный участок дороги, где можно дать просра газу, дабы поглядеть на графики работы наддува и установки наддува. Включил запись графиков и дал джазу. Кхм… дым/пыль коромыслом сзади в свете фар едущих сзади машин… Так-с, поглядим на графики… Жованый крот! Что это такое?! Установка наддува 2550, давление наддува — 3070 мбар. Да как так-то? (с)
Дабы отмести погрешности/солнечные возмущения/влияние луны сделал ещё два заезда со снятием графиков… м-да… не погрешность, однако, стабильное завышение…

Снял крышку с грибка, на четверть оборота повернул по часовой стрелке шток. Ещё заезд… и ещё один. Всё стало ещё круче. при наборе оборотов явно слышен сброс клапана, видно эбу отключает модуляцию на грибке и давление падает (видно и по графикам), машина при наборе скорости дёргается как параличная…
Вот те на… Хм.

В итоге 2х часов убитого времени и 30 заездов выяснил, что на клапане давление не то что перекручено… оно очень перекручено, пришлось в общей сложности сделать против часовой стрелки 2 полных оборота, клип показал примерно совпадающие давления (фактическое и то что задаёт эбу), машина поехала ровно, разгон теперь с равномерной тягой, без провалов и рывков, а самое интересное: при разгоне мгновенный расход раньше нередко был

30 литров… Сейчас как не гонял выше 19 не идёт. Вот оно чё. Средний расход у меня сейчас 8.8 литров (5 дней по городу с работы/на работу и 2 выходных по трассе), посмотрим как будет прогрессировать, но, судя по всему, он должен упасть…

PS Графиков миллион и они на стареньком буке, который заточен под клип, может, со временем выложу пяток.

PPS грибок родной, Пирбург. В России я первый владелец, машина такой из франции пришла. Гадать почему — даже не знаю.

PPPS я смотрел параметр PR009 (установка давления наддува) и PR041 (давление наддува)

Обновление!
А вот обещанные графики:
вот несколько графиков до того как:

Источник

artbooket › Блог › Основы турбонаддува. Часть 3.

Эта и следующая часть будут несколько сложнее первых двух, в них мы рассмотрим составляющие компрессорной карты, как оценить «соотношение давлений» и массовый расход воздуха вашего двигателя, а так же как рисовать точки на компрессорной карте для правильно подбора турбокомпрессора.
И…положите рядом с собой калькулятор — он вам понадобится при изучении этой и следующей статьи 🙂

Читайте также:  Где находится датчик давления масла на jcb 3cx

Для начала обозначим и разъясним некоторые термины, с которыми нам придется столкнуться в этой статье:

Понятие абсолютного и относительного давления.

Под абсолютным давлением мы будем понимать давление относительно полного вакуума. Соответственно оно может быть только больше или равным нулю. На Земле на уровне моря оно принято равным одной атмосфере или 1атм.

Под относительным давлением мы будем понимать давление относительно атмосферного. Соответственно оно может быть как положительным так и отрицательным, в зависимости от того больше или меньше оно чем атмосферное.

Давайте рассмотрим их на примере давления во впускном коллекторе двигателя. Все наверняка видели в своей жизни приборы показывающие наддув. Такие приборы показывают именно относительно давление. На двигателе, работающем на холостом ходу, они показывают разряжение -0.65.-0.75атм. На наддуве мы можем видеть значения 1.0…2.0 и выше атмосфер. Всё это значения относительного давления. Абсолютные значения будут всегда на 1.0 больше, поскольку мы должны добавить одну атмосферу атмосферного давления, относительно которой прибор и показывает свои значения.
Т.е. на ХХ абсолютное давление будет равно +0.25.+0.35, а на наддуве, соответственно 2.0.3.0.

Составляющие компрессорной карты

Компрессорная карта это график, описывающий конкретные характеристики компрессора в различных режимах его работы. Среди этих характеристик мы разберем: эффективность компрессора, диапазон массового расхода воздуха, возможности работы на разных давлениях наддува, а так же скорость вращения вала турбины.

Ниже приведена типичная компрессорная карта с названиями ее составляющих.

Рассмотрим их по порядку:

По вертикальной оси у нас расположен Pressure Ratio, или «соотношение давлений», величина, описываемая как отношение абсолютного давления на выходе из компрессора к абсолютному давлению на его входе:

Где:
PR — соотношение давлений
Pcr — абсолютное давление на выходе компрессора
Pin — абсолютное давление на входе компрессора

*Очень грубо говоря эта величина просто показывает во сколько раз компрессор сжал воздух.

Как рассчитать Pressure Ratio: К примеру мы хотим рассмотреть ситуацию работы компрессора при 0.7 атм наддува в коллекторе. Для начала вспомним что «наддув» это относительное давление, а мы везде оперируем только абсолютным. Поэтому сразу добавляем к нему 1.0 атмосферного давления и дальше имеем в виду что у нас 1.7атм абсолютного давления в коллекторе

. В нашем случае, при нормальном атмосферном давлении на входе в турбину, соотношение давлений будет таким:

PR = Pcr/Pin = 1.7/1.0 = 1.7

Но на самом деле все несколько сложнее. В виду наличия в системе воздушного фильтра давление на входе в компрессор, как правило, несколько меньше атмосферного. В зависимости от размера и качества фильтра оно может быть меньше на 0.02-0.10атм. Допустим у нас оно меньше атмосферного на 0.05атм.

Читайте также:  Если низкое давление после инфаркта что делать

Тогда наша формула приобретет следующий вид:

PR = 1.7/(1.0-0.05) = 1.7 / 0.95 = 1.79

Повторим еще раз — для вычисления Pressure Ratio нам надо знать наддув для которого мы его считаем и разряжение на впуске перед компрессором. После этого

PR = (1.0 + давление на выходе компрессора) / (1.0 — разряжение на впуске)

В случае спортивной машины без воздушного фильтра, мы можем принять наш делитель всегда равным единице и просто считать PR = 1 + ДавлениеНаВыходе.

Air Flow или расход воздуха

По горизонтальной оси у нас расположен «массовый расход воздуха».

Это величина, показывающая, массу воздуха, проходящую за единицу времени через компрессор и, соответственно, дальше через двигатель. Исторически это величина на компрессорных картах выражается в lb/min или по-русски в фунтах воздуха за минуту времени. Фунт это 0.45кг, а минута это 60 секунд 🙂

Поскольку, как мы уже проходили, мощность двигателя напрямую зависит от количества топливо-воздушной смеси которая проходит через него, массовый расход, это, одна из главных характеристик которую мы можем получить, изучая компрессорную карту. При прохождении через мотор 1 фунта воздуха в минуту, современные моторы вырабатывает в среднем 9-11 лошадиных сил мощности. Соответственно даже беглый взгляд на компрессорную карту может нам сказать, на какую потенциальную мощность мы можем рассчитывать с этой турбиной. На приведенном выше примере, область работы компрессора заканчивается примерно на 52 фунтах, соответственно эту турбину грубо можно сразу оценить на 500лс.

Граница Surge это крайняя левая линия компрессорной карты. Работа компрессора левее этой границы, т.е. за пределами обозначенной компрессорной картой, связанна с нестабильностью воздушного потока, всплесками и провалами наддува. Длительная работа компрессора в таком режиме приводит к преждевременному выходу его из строя в виду большой переменной нагрузки на подшипники и крыльчатку компрессора.

Турбина может попасть в режим Surge в одном из двух случаев.

Первый самый распространенный — при резком закрытии дросселя, когда массовый расход воздуха через мотор резко падает, но турбина все еще вращается достаточно быстро. Это мгновенно перебрасывает нас влево по компрессорной карте в зону Surge. Но быстрое срабатывание Blow Off клапана восстанавливает расход воздуха через турбины, выпуская избыток наддутого воздуха в атмосферу.

Второй случай — возникновение Surge на режиме полной нагрузки, обычно на низких оборотах, когда турбина только начинает выходить на наддув. Он значительно более опасен, поскольку может продолжаться относительно долго, особенно на высоких передачах. Как правило, это связанно со слишком большой скоростью вращения турбины и большом создаваемом давлении в компрессоре, при относительно малом общем расходе воздуха через мотор. Обычно наблюдается на гибридах с маленькой горячей частью, маленьким A/R горячей части и большой компрессорной частью.

Читайте также:  Аварийный датчик давления масла технические характеристики

Еще одним способом, помогающим снизить вероятность попадания компрессора в зону Surge является использование компрессорного хаузинга с так называемым «Ported Shroud». Фактически это обводные воздушные каналы, встроенные в компрессорный хаузинг:

Благодаря этим каналам удается сместить границу Surge левее по компрессорной карте, за счет того что часть воздуха может выйти из компрессора назад во впуск. Это позволяет при прочих равных использовать больший компрессор на меньшей турбинной части без возникновения эффекта Surge. Ниже приведено сравнение двух компрессорных карт: с обычным компрессорным хаузингом и со встроенными обводными каналами:

Видно, что есть довольно значительная область карты красного цвета, которая является рабочей для турбины с портированным компрессорным хаузингом, но при этом находится левее границы Surge карты синего цвета, соответствующей обычному хаузингу.

Как это выглядит в реальной жизни? Ниже приведено фото двух турбин 30й серии, первая 3071 без «Ported Shroud», вторая 3076 с заводским «Ported Shroud»

Так же бывает возможность доработки заводского компрессорного хаузинга под «Ported Shroud», если с завода он не был изготовлен. Например в случае GT3582R это выглядит так:

Посмотрим еще раз на нашу компрессорную карту и рассмотрим последние три составляющих:
«Предельная граница эффективности», «Зоны эффективности компрессора» и «Скорость вращения турбины»

Предельная граница эффективности компрессора

Как линия Surge ограничивает карту слева, так граница эффективности ограничивает ее справа. Garrett на своих картах указывает область работы компрессора до 60-58% эффективности. Все, что находится правее этой границы, будет иметь эффективность ниже 58% и использование компрессора в этой области теряет смысл. За этим пределом начинается неоправданно большой нагрев сжимаемого компрессором воздуха, а скорость вращения турбины выходит за допускаемые производителем значения.

Зоны эффективности компрессора

Мы видим концентрические замкнутые линии, расходящиеся из центральной области карты. Возле каждой такой линии подписано значение эффективности компрессора внутри области очерченной этой линией. Самая маленькая область в центральной части соответствует максимально возможной эффективности компрессора. По мере удаления от центра мы будем попадать в области все меньшей и меньшей эффективности пока не упремся либо в предел по Surge слева, либо в предел по производительности справа.

Скорость вращения турбины

Линии, обозначенные на карте как «скорость вращения турбины», показывают с какой скоростью будет вращаться вал турбины в этой области. Значения выражаются в оборотах вала за минуту времени. С ростом скорости вращения турбины у нас увеличивается давление и/или расход воздуха через компрессор. Как видно, эти линии начинают сходиться в области границы зоны эффективности и, как уже было сказано выше, за пределами этой области скорость вращения турбины быстро увеличивается за пределы допустимого.

На этом мы заканчиваем рассмотрение компрессорной карты и теперь, понимая что на ней изображено, в следующей главе мы перейдем к изучению процесса подбора турбины под конкретный мотор.

Источник

Adblock
detector