Меню

Гидролиз солей усиливается при повышении давления

§ 20. Подавление и усиление гидролиза солей

В некоторых случаях явление гидролиза мешает проведению анализа, поэтому необходимо знать способы усиления и подавления гидролиза.

Усилить или подавить гидролиз можно тремя способами:

1) прибавлением к раствору соли другого гидролизующегося электролита, кислоты или щелочи;

2) изменением концентрации раствора соли;

3) повышением или понижением температуры раствора соли.

Для усиления гидролиза соли, образованной катионом слабого основания и анионом сильной кислоты, необходимо добавить основание для связывания получающихся в процессе гидролиза ионов водорода:

При добавлении основания произойдет нейтрализация кислоты и динамическое равновесие сдвинется вправо, т. е. гидролиз усилится. Если же к раствору гидролизующейся соли типа NH4Cl прибавить кислоты, то гидролиз затормозится.

Чтобы усилить гидролиз соли, образованной анионом слабой кислоты и катионом сильного основания (например, CH3COONa), необходимо связать свободные ионы гидроксила, получающиеся в процессе гидролиза:

Прибавление кислоты приводит к нейтрализации основания и динамическое равновесие сдвигается вправо, т. е. гидролиз усиливается. Если к раствору гидролизующейся соли рассматриваемого типа прибавить основание, то гидролиз замедлится.

Связать ионы водорода или гидроксила можно добавлением не только щелочей или кислот, но и других электролитов. Этими методами часто пользуются, когда нужно усилить или подавить гидролиз. Ионы водорода можно связать в сложные анионы (НСОз, НРОГ», H2POI и др.) или в нейтральные молекулы слабых кислот (H2CO3, H3BO3, CH3COOH и др.), действуя на растворы гидролизующихся солей солями сильных оснований и слабых кислот, например Na2CO3:

HCO8″+ H+ —> H2CO3 ^zt H2O+ CO3

Ионы гидроксила можно связывать в комплексные ионы [Co(OH)]+ [Al(OH)]++ [Al(OH)2]+ и др. или в нейтральные молекулы слабых оснований, действуя на растворы гидролизующихся солей солями слабых оснований и сильных кислот.

Зависимость гидролиза от концентрации и температуры раствора. С разбавлением растворов солей степень гидролиза, как правило, увеличивается (табл. 4). Нагревание также способствует усилению гидролиза, так как Kw увеличивается с температурой.

Ступенчатый гидролиз солей, образованных многоосновными кислотами или основаниями, идет преимущественно по первой ступени. Чем слабее основание и кислота или чем меньше растворимость продуктов гидролиза, тем полнее протекает гидролиз.

Нацример, гидролиз Fe(CH3COO)3 на холоду протекает с образованием Fe(OH)(CH3COO)2. При кипячении раствора Fe(CH3COO)3 выпадает осадок Fe(OH)2(CH3COO).

При кипячении растворов Na3AlO3 и Na^CrO3 алюминат остается в растворе, а хромит гидролизуется с образованием Cr(OH)3-

Подобно гидролизу, наблюдающемуся в водных растворах, соли также подвергаются сольволизу в неводных растворах. Сольволизом в неводных растворах назы-

Формулы для вычисления ^Сгидр.» ^гидр. и сьГИдр# в растворах гидролизующихся бинарных солей

*гндр.(концентрация гидролизованиой части соли)

Соль, образованная катионом слабого основания и анионом сильной кислоты (типа NH4CI)

Соль, образованная катионом сильного основания и анионом слаО*ой кислоты (типа CH3COONa)

Соль, образованная катионом слабого основания и анионом слабой кислоты (типа

Источник

Влияние концентрации раствора, температуры, рН среды на степень гидролиза. Гидролиз кислых солей. Совместный гидролиз солей. Многостадийность реакций гидролиза

Факторы, влияющие на степень гидролиза

1. Природа соли. Чем слабее основание и кислота, образующие соль, тем она сильнее гидролизуется.

2. Концентрация соли. При разбавлении степень гидролиза растет, так как растет число молекул воды, являющихся исходным веществом в реакции гидролиза, поэтому, по принципу Ле Шателье, равновесие смещается вправо

3. Температура. Гидролиз является эндотермическим процессом, поэтому при повышении температуры степень гидролиза увеличивается, так как равновесие смещается вправо.

4. Присутствие одноименных ионов. Если в раствор соли, имеющий кислую реакцию, добавить кислоту (т.е. ионы ), то равновесие сместится влево и гидролиз ослабится.

Если добавить щелочь (т.е. ионы), катионы будут связываться в молекулы H2O, и равновесие сместится вправо. Гидролиз усилится.

Аналогично, если в раствор соли, имеющий щелочную реакцию, добавить щелочь, гидролиз ослабится, а при добавлении кислоты – усилится.

Часто необходимо подавить гидролиз. Для этого растворы солей следует хранить в концентрированном виде при низких температурах.

Кислые соли образуются в результате неполного замещения водорода на металл или аммонийную группу. Таким образом, они состоят из металла, водорода и кислотного остатка. Образование их возможно только для многоосновных кислот.

Читайте также:  Надзор за работой сосудов под давлением

Примеры таких соединений:

— дигидрофосфат натрия NaH2PO4;

— гидрофосфат натрия Na2HPO4;

— гидросульфат калия KHSO4.

В названии их присутствуют приставки «гидро-» (при наличии одного незамещенного катиона водорода) или «дигидро-» (при наличии двух незамещенных катионов водорода).

В водных растворах кислые соли диссоциируют на отрицательные анионы в виде кислотных остатков, а также на два вида положительных катионов (ионы металла и водорода): NaHSO4 ↔ Na+ + H+ + SO4? ?. При гидролизе кислых солей, образованных сильными кислотами, среда водного раствора имеет рН менее 7, отсюда и пошло название этих солей. При гидролизе кислых солей, полученных из слабых кислот (например, гидрокарбонаты), раствор будет нейтральным или даже щелочным, то есть рН не менее 7.

Гидролиз взаимный (двойной или совместный) гидролиз двух солей (образованных слабым основанием и слабой кислотой), полностью гидролизующихся в водном растворе (в реакцию с водой вступают и катион, и анион). Такой гидролиз происходит в обменных реакциях при смешивании водных растворов солей. Являясь обратимым, процесс гидролиза протекает только до достижения момента равновесия (т.е. не до конца), при этом происходит связывание ионов солей и взаимное усиление гидролиза <ионы Н+ и ОН- образуют молекулу слабого электролита - воды (Н2О), равновесие смещается вправо>. При взаимном гидролизе число атомов водорода, молекул воды и ионов (ОН-) в полученной слабой кислоте равно заряду иона, образующего кислоту.

Обычно такой гидролиз солей описывается молекулярным и суммарным молекулярными уравнениями:

2CrCl3 (по катиону) + 3K2S (по аниону) + 6H2O ↔ 2Cr(OH)3↓ + 3H2S↑ + 6KCl

— суммарное молекулярное уравнение:

2CrCl3 + 3K2S + 12H2O ↔ 2Cr(OH)3↓ + 3H2S↑ + 6KCl + 6H2O (отличия в уравнениях выделены шрифтом). Другие примеры реакций совместного гидролиза с взаимным его усилением:

2AlCl3 + 3Na2CO3 + 3H2O = 2Al(OH)3↓ + 3CO2↑ + 6NaCl = <2AlCl3 + 3Na2CO3 = Al2(CO3)3 + 6NaCl>+ Al2(SO4)3 + 3Na2CO3 + 3H2O = 2Al(OH)3↓ + 3Na2SO4 + 3СО2↑

Обычно в каждом отдельном растворе гидролиз ограничивается только первой стадией

Взаимное усиление гидролиза обычно наблюдается при смешивании растворов солей, каждая из которых гидролизуется незначительно: одна — по аниону, другая — по катиону; совместный гидролиз усиливается и протекает до конца.

Такое усиление гидролиза происходит также при смешивании растворов двух слабо гидролизованных солей, содержащих многозарядные:

— кислотные остатки слабых кислот

— основные остатки слабых оснований (одна образована слабой кислотой и сильным основанием, а другая — сильной кислотой и слабым основанием)

Протекание гидролиза зависит от соотношения сил кислоты и основания. Гидролиз усиливается взаимно, если к раствору соли слабой кислоты и сильного основания добавить сильной кислоты или к раствору соли сильной кислоты и слабого основания добавить щелочь.

Например, если имеются две разные емкости с гидролизованными растворами солей

Al(NO3)3 (по катиону): Al3+ + H2O ↔ AlOH2+ + H+

К2СО3 (по аниону): CO32- + H2O ↔ HCO3- + OH-

то после смешивания растворов произойдет связывание ионов H+ и OH- (с образованием молекул воды — слабого электролита) и образуются Al(OH)3 и СО2 (Н2СО3), гидролитическое равновесие смещается вправо (кислая среда, образующаяся в результате гидролиза солей алюминия, нейтрализуется щелочной средой, образованной гидролизом карбоната):

2Al(NO)3)3 + 3K2CO3 + 3H2O = 2Al(OH)3↓ + 3CO2↑ + 6KNO3

2Al3+ + 3CO32- + 3HOH = 2Al(OH)3↓ + 3CO2↑

т.е. происходит взаимное усиление гидролиза (гидролиз каждой из солей протекает до конца, т.е. результатом является полный гидролиз солей)

Аналогичный эффект взаимного усиления гидролиза наблюдается с растворами солей и другими пáрами солей

Взаимный гидролиз протекает с выделением аммиака, слабой летучей кислоты (H2CO3, H2S, H2SO3 и др.), при выпадении осадка слабого основания или нерастворимой кислоты (H2SiO3)>

Совокупность стадий, из которых складывается химическая реакция, составляет ее механизм. Многостадийность реакций приводит к тому, что экспериментально наблюдаемые кинетические уравнения их не соответствуют стехиометрическим уравнениям. Согласно опытным данным, окисление ионов железа идет со скоростью: v = k• [Fe2+]2?[O2]. Как следует из стехиометрических уравнений, ожидаемый суммарный порядок для реакции равен 9, а фактически он равен 3.

Подобного рода расхождения позволяют определенно утверждать, что данная реакция является сложной и включает совокупность параллельных или последовательных элементарных процессов. В соответствии с этим закон действующих масс в полной мере применим лишь к одностадийным реакциям. В случае многостадийных реакций зависимость их скорости от концентрации исходных веществ может быть рассчитана аналитически или установлена опытным путем.

Читайте также:  Как регулировать свое артериальное давление

Источник

Гидролиз солей

Водные растворы солей имеют разные значения рН и показывают различную реакцию среды — кислую, щелочную, нейтральную.

Например, водный раствор хлорида алюминия AlCl3 имеет кислую среду (рН 7), растворы хлорида натрия NaCl и нитрита свинца Pb(NO2)2 — нейтральную среду (pН = 7). Эти соли не содержат в своем составе ионы водорода Н + или гидроксид-ионы ОН — , которые определяют среду раствора. Чем же можно объяснить различные среды водных растворов солей? Это объясняется тем, что в водных растворах соли подвергаются гидролизу.

Слово «гидролиз» означает разложение водой («гидро» — вода, «лизис» — разложение).

Гидролиз — одно из важнейших химических свойств солей.

Гидролизом соли называется взаимодействие ионов соли с водой, в результате которого образуются слабые электролиты.

Сущность гидролиза сводится к химическому взаимодействию катионов или анионов соли с гидроксид-ионами ОН — или ионами водорода Н + из молекул воды. В результате этого взаимодействия образуется малодиссоциирующее соединение (слабый электролит). Химическое равновесие процесса диссоциации воды смещается вправо.

Поэтому в водном растворе соли появляется избыток свободных ионов Н + или ОН — , и раствор соли показывает кислую или щелочную среду.

Гидролиз — процесс обратимый для большинства солей. В состоянии равновесия только небольшая часть ионов соли гидролизуется.

Любую соль можно представить как продукт взаимодействия кислоты с основанием. Например, соль NaClO образована слабой кислотой HClO и сильным основанием NaOH.

В зависимости от силы исходной кислоты и исходного основания соли можно разделить на 4 типа:

Соли I, II, III типов подвергаются гидролизу, соли IV типа не подвергаются гидролизу

Рассмотрим примеры гидролиза различных типов солей.

I. Соли, образованные сильным основанием и слабой кислотой, подвергаются гидролизу по аниону. Эти соли образованы катионом сильного основания и анионом слабой кислоты, который связывает катион водорода Н + молекулы воды, образуя слабый электролит (кислоту).

Пример: Составим молекулярное и ионные уравнения гидролиза нитрита калия KNO2.

Соль KNO2 образована слабой одноосновной кислотой HNO2 и сильным основанием KОН, что можно изобразить схематически так:

Напишем уравнение гидролиза соли KNO2:

Каков механизм гидролиза этой соли?

Так как ионы Н + соединяются в молекулы слабого электролита HNО2, их концентрация уменьшается и равновесие процесса диссоциации воды по принципу Ле-Шателье смещается вправо. В растворе увеличивается концентрация свободных гидроксид-ионов ОН — . Поэтому раствор соли KNO2 имеет щелочную реакцию (pН > 7).

Вывод: Соли, образованные сильным основанием и слабой кислотой, при растворении в воде показывают щелочную реакцию среды, pН > 7.

II. Соли, образованные слабым основанием и сильной кислотой, гидролизуются по катиону. Эти соли образованы катионом слабого основания и анионом сильной кислоты. Катион соли связывает гидроксид-ион ОН — воды, образуя слабый электролит (основание).

Пример: Составим молекулярное и ионное уравнения гидролиза йодида аммония NH4I.

Соль NH4I образована слабым однокислотным основанием NH4OH и сильной кислотой НI:

При растворении в воде соли NH4I катионы аммония NH4 + связываются с гидроксид-ионами ОН — воды, образуя слабый электролит – гидроксид аммония NH4OH. В растворе появляется избыток ионов водорода Н + . Среда раствора соли NH4I – кислая, рН — из молекулы воды и образует слабое основание, и анионом слабой кислоты, который связывает ионы Н + из молекулы воды и образует слабую кислоту. Реакция растворов этих солей может быть нейтральной, слабокислой или слабощелочной. Это зависит от констант диссоциации слабой кислоты и слабого основания, которые образуются в результате гидролиза.

Пример 1: Составим уравнения гидролиза ацетата аммония CH3COONH4. Эта соль образована слабой уксусной кислотой СН3СООН и слабым основанием NH4ОH:

Реакция раствора соли CH3COONH4 – нейтральная (рН=7), потому что Kд(СН3СООН)=Kд(NH4ОH).

Пример 2: Составим уравнения гидролиза цианида аммония NH4CN. Эта соль образована слабой кислотой HCN и слабым основанием NH4ОH:

Читайте также:  Директива по оборудованию работающему под давлением ped

Реакция раствора соли NH4CN — слабощелочная (pН > 7), потому что Kд(NH4ОH)> Kд(HCN).

Как уже было отмечено, для большинства солей гидролиз является обратимым процессом. В состоянии равновесия гидролизуется только небольшая часть соли. Однако некоторые соли полностью разлагаются водой, т. е. для них гидролиз является необратимым.

Необратимому (полному) гидролизу подвергаются соли, которые образованы слабым нерастворимым или летучим основанием и слабой летучей или нерастворимой кислотой. Такие соли не могут существовать в водных растворах, К ним, например, относятся:

Пример: Составим уравнение гидролиза сульфида алюминия Al2S3:

Гидролиз сульфида алюминия протекает практически полностью до образования гидроксида алюминия Al(OH)3 и сероводорода H2S.

Поэтому в результате обменных реакций между водными растворами некоторых солей не всегда образуются две новые соли. Одна из этих солей может подвергаться необратимому гидролизу с образованием соответствующего нерастворимого основания и слабой летучей (нераствориой) кислоты. Например:

Суммируя эти уравнения, получаем:

IV. Соли, образованные сильной кислотой и сильным основанием, не гидролизуются, потому что катионы и анионы этих солей не связываются с ионами Н + или ОН — воды, т. е. не образуют с ними молекул слабых электролитов. Равновесие диссоциации воды не смещается. Среда растворов этих солей — нейтральная (рН = 7,0), так как концентрации ионов Н + и ОН — в их растворах равны, как в чистой воде.

Вывод: Соли, образованные сильной кислотой и сильным основанием, при растворении в воде гидролизу не подвергаются и показывают нейтральную реакцию среды (рН = 7,0).

Ступенчатый гидролиз

Гидролиз солей может протекать ступенчато. Рассмотрим случаи ступенчатого гидролиза.

Если соль образована слабой многоосновной кислотой и сильным основанием, число ступеней гидролиза зависит от основности слабой кислоты. В водном растворе таких солей на первых ступенях гидролиза образуются кислая соль вместо кислоты и сильное основание. Ступенчато гидролизуюгся соли Na2SO3, Rb23, K2SiO3, Li3PO4 и др.

Пример: Составим молекулярное и ионное уравнения гидролиза карбоната калия K2СО3.

Гидролиз соли K2СО3 протекает по аниону, потому что соль карбонат калия образована слабой кислотой Н2СО3 и сильным основанием KОН:

Так как Н2СО3 – двухосновная кислота, гидролиз K2СО3 протекает по двум ступеням.

Продуктами первой ступени гидролиза K2СО3 являются кислая соль KHCO3 и гидроксид калия KОН.

Вторая ступень (гидролиз кислой соли, которая образовалась в результате первой ступени):

Продуктами второй ступени гидролиза K2СО3 являются гидроксид калия и слабая угольная кислота Н2СО3. Гидролиз по второй ступени протекает в значительно меньшей степени, чем по первой ступени.

Среда раствора соли K2СО3 — щелочная (рН > 7), потому что в растворе увеличивается концентрация ионов ОН — .

Если соль образована слабым многокислотным основанием и сильной кислотой, то число ступеней гидролиза зависит от кислотности слабого основания. В водных растворах таких солей на первых ступенях образуется основная соль вместо основания и сильная кислота. Ступенчато гидролизуются соли MgSО4, CoI2, Al2(SO4)3, ZnBr2 и др.

Пример: Составим молекулярное и ионное уравнения гидролиза хлорида никеля (II) NiCl2.

Гидролиз соли NiCl2 протекает по катиону, так как соль образована слабым основанием Ni(OH)2 и сильной кислотой НСl. Катион Ni 2+ связывает гидроксид-ионы ОН — воды. Ni(OH)2 — двухкислотное основание, поэтому гидролиз протекает по двум ступеням.

Продуктами первой ступени гидролиза NiCl2 являются основная соль NiOHCl и сильная кислота HCl.

Вторая ступень (гидролиз основной соли, которая образовалась в результате первой ступени гидролиза):

Продуктами второй ступени гидролиза являются слабое основание гидроксид никеля (II) и сильная хлороводородная кислота НCl. Однако степень гидролиза по второй ступени намного меньше, чем по первой ступени.

Среда раствора NiCl2 — кислая, рН + .

Гидролизу подвергаются не только соли, но и другие неорганические соединения. Гидролизуются также жиры, углеводы, белки и другие вещества, свойства которых изучаются в курсе органической химии. Поэтому можно дать более общее определение процесса гидролиза:

Гидролиз — это реакция обменного разложения веществ водой.

Источник

Adblock
detector