Меню

Гидростатическое и манометрическое давление

Что такое гидростатическое давление воды?

В любом объеме воды присутствует сила, которую принято называть гидростатическим давлением. Данное определение получило широкое распространение. Оно незаменимо в физике и механике.

Технические средства различного назначения существуют только благодаря знаниям о гидростатике.

Что это такое?

Гидростатическое давление – давление столба воды над условным уровнем. Гидростатическое давление также заменяться аббревиатурой ГДВ.

Свойства

В каждой статичной жидкой среде всегда присутствует напряжение сжатия. К примеру, вода, размещенная в условном баке, станет давить на его стенки и дно. А если погрузить в воду какой-либо предмет, то можно с уверенностью сказать, что этот предмет окажется под воздействием силовой нагрузки.

К основным свойствам гидростатического давления относят три закономерности:

  1. ГДВ всегда направлено перпендикулярно той площадке, на которую оно оказывает действие. Стенки емкостей бывают вертикальными, бывают наклонными. На направление действия силы это совершенно не влияет. Давление внутри емкости все равно будет направлено под углом 90° к стенкам.
  2. В любой точке жидкости величина ГДВ неизменна по всем направлениям. Свойство №2 объясняется молекулярным строением воды. Частицы в жидкостях довольно свободны, и способны легко перемещаться относительно друг друга. У твердых материалов молекулы собраны в кристаллические решетки, поэтому их форма неизменна.

Из этого обстоятельства следует, что когда давление распространяется на конкретный объем воды, в котором молекулы не имеют прочных связей, то оно одинаково действует во все стороны. При этом сила этого давления имеет одну и ту же величину.

  • ГДВ в некоторой точке будет зависеть от ее месторасположения в пространстве. Это свойство очевидно. Вполне понятно, что чем глубже тело опустится в жидкую среду, тем больше окажется показатель ГДВ. И, наоборот, при незначительном погружении, ГДВ будет маленьким.
  • От чего зависит параметр?

    Для того чтобы рассчитать параметр давления в заданной точке, необходимо знать все о ее местоположении.

    И учесть, что на усилие сжатия влияют следующие факторы:

    • плотность воды;
    • глубина погружения.

    Может показаться странным, но размер и форма емкости на показатель ГДВ совершенно не влияют.

    Чему в среднем равна гидростатика H2O?

    Молекулярные частицы, собранные в некотором объеме, подвержены воздействию силы сжатия. Разные молекулы испытывают разное ГДВ. Это зависит от конкретного местоположения частиц в водном объеме. На поверхности сжатие меньше, на глубине, больше.

    • p – плотность воды (зависит от температуры, в округленном значении – 1 г/мл);
    • g – значение ускорения свободного падения (9,8 м/сек²);
    • h – глубина, где будет определяться давление.

    Чтобы узнать среднее значение ГДВ для заданного объема, следует воспользоваться формулой:

    • P – гидростатическое давление, действующее на дно резервуара с водой;
    • S – площадь дна емкости.

    Как определить?

    Узнать ГДВ в требуемой точке возможно с помощью уравнения, которое называется: основное уравнение гидростатики. Выражено оно в виде:

    • P0 – давление на внешней поверхности жидкости (атмосферное);
    • y – удельный вес воды;
    • h – высота водного столба (глубина).

    Показательно, что ГДВ в заданной точке будет равно величине, состоящей из суммы значений: вес атмосферного столба и вес водного слоя. Наименование у этого параметра – полное давление.

    Если на водную поверхность давит сила, которая больше атмосферной нагрузки, то такой вид воздействия будет именоваться, как избыточное давление. Он выражается разностью между полным и атмосферным давлением:

    Пояснительным примером может послужить компрессор холодильника, который создает избыточное сжатие газа в герметичной камере.

    Практическое применение знаний

    На практике законы гидравлики широко распространены в современном мире техники.

    На их основе построена работа различного оборудования, например, такого как:

    • измерительные приборы;
    • насосы;
    • компрессоры;
    • гидравлические прессы;
    • гидравлические домкраты и др.

    Вся гидроавтоматика, управляющая работой, от автомобилей, до космических кораблей, разработана благодаря этим знаниям.

    Заключение

    Гидростатическое давление воды – это очень важный показатель. Он позволяет производить не только расчеты при разработке и производстве различных устройств, работающих на основе законов гидростатики.

    Его часто задействуют и простые люди, на самом обычном бытовом уровне, даже не подозревая об этом. Например, используя прибор для измерения артериального давления, или включая насос на даче.

    Три свойства, которыми обладает гидростатика воды, остаются неизменными при любых обстоятельствах, что полезно помнить. Ведь при необходимости, можно даже самостоятельно произвести какие-либо математические расчеты. Например, вычислить ГДВ на дне моря или океана.

    Источник

    Гидростатическое давление

    Определение гидростатического давления

    Физическая величина, равная отношению нормальной силы ($F$), действующей со стороны жидкости на некоторую площадь, на величину этой площади ($S$) называют давлением ($p$) жидкости:

    Если несжимаемая жидкость находится в равновесии давление по горизонтали всегда одно и то же. Свободная поверхность жидкости всегда горизонтальна, за исключением места около стенок сосуда. У несжимаемой жидкости плотность не зависит от давления. Если поперечное сечение цилиндрического столба жидкости равно $S$, высота столба $h$, плотность жидкости $\rho $, тогда вес ($P$) этого столба равен:

    \[P=\rho gSh\ \left(2\right).\]

    В соответствии с (1) давление на основание столба жидкости составит величину:

    Формула (3) указывает, что давление столба несжимаемой жидкости на дно сосуда зависит от высоты и плотности жидкости. В общем случае плотность зависит от температуры жидкости. Давление, которое вычисляется при помощи формулы (3) называют гидростатическим давлением/

    И так, гидростатическим давлением называют давление столба жидкости, находящейся в состоянии равновесия, над некоторым условно выбранным уровнем при действии силы тяжести. Гидростатическое давление определяется по формуле (3).

    Давление внутри жидкости ($p$) на глубине $h$, будет складываться из давления атмосферы ($p_0$) и гидростатического давления:

    Единицей измерения гидростатического давления в Международной системе единиц (СИ) является паскаль (Па):

    Закон Архимеда

    В соответствии с формулой (3) давление, оказываемое на нижние слои жидкости больше, чем на верхние. Из-за этого тело, погруженное в жидкость, испытывает действие выталкивающей силы. Величину выталкивающей силы определяет закон Архимеда: На тело, находящееся в жидкости (газе) действует выталкивающая сила, которая равна весу жидкости (газа) вытесненной телом. Эта сила называется силой Архимеда ($F_A$):

    \[F_A=\rho gV\ \left(4\right),\]

    где $V$ — объем тела; $\rho $ — плотность жидкости; $g$ — ускорение свободного падения. Сила Архимеда направлена вверх.

    Примеры задач с гидростатическим давлением

    Задание. В чем состоит суть гидростатического парадокса?

    Решение. Гидростатическим парадоксом называют явление, при котором сила весового давления жидкости, находящейся в сосуде отличается от веса находящейся там жидкости. Сила давления жидкости на дно емкости равняется весу жидкости только в том случае, если сосуд имеет форму цилиндра. При такой конфигурации емкости стенки являются вертикальными, силы давления стенок на жидкость (соответственно, жидкости на стенки) направлены горизонтально, вертикальной составляющей они не имеют (рис.1).

    Если сосуд имеет вверху поперечное сечение больше, чем сечение дна, то сила давления на дно меньше, чем вес жидкости. И наоборот, если сосуд с жидкостью имеет сужающееся вверху горло, то сила давления на дно сосуда больше, чем вес жидкости. Причиной возникновения гидростатического парадокса является то, что жидкость оказывает давление не только на дно сосуда, но давит и на его стенки. При этом давление на стенки сосуда, расположенные не перпендикулярно основанию имеют вертикальную составляющую. При этом в сосуде, который расширяется к верху, эта составляющая направлена вверх, а в сосуде, уменьшающем свое сечение к верху, вертикальная составляющая давления направлена вниз. Вес жидкости вычисляется как сумма всех вертикальных компонент давления жидкости по внутренней площади емкости.

    Задание. Каково гидростатическое давление воды на дно сосуда с водой, если высота столба жидкости составляет $h=$0,5 м?

    Решение. Гидростатическое давление на дно сосуда найдем как:

    \[p=\rho gh\ \left(2.1\right),\]

    Вычислим это давление:

    \[p=1000\cdot 9,8\cdot 0,5\approx 5000\ (Па)\]

    Источник

    Гидростатическое давление, напоры

    Механика жидкости и газа, рассматривает две категории сил, действующих в жидкости: объемные и поверхностные. Объемные или массовые силы действуют на каждую частицу жидкости внутри данного объема. Таковы силы тяжести и силы инерции. Действие силы тяжести выражается весом заданного объема gρV, а действие центробежной силы — .

    Поверхностные силы действуют на поверхностях, ограничивающих данный объем жидкости от атмосферы или соседних объемов жидкости. К поверхностным силам относятся нормальные силы (атмосферное давление, давление со стороны стенок сосуда) и касательные силы.

    В гидростатике рассматривают жидкость находящуюся в абсолютном или относительном покое. Под относительным покоем понимать такое состояние жидкости, при котором отдельные ее частицы, оставаясь в покое, перемещаются вместе с сосудом, в который она заключена. Абсолютный покой — неподвижность относительно земли.

    В гидравлике различают два понятия: сила давления и дав­ление. Сила давления — это — вся сила, которая действует на всю поверхность S, а давление это сила действующая по нормали на единицу поверхности.

    Сила, действующая со стороны жидкости на единицу площади поверхности тела, соприкасающегося с ней, называется гидростатическим давлением. Если на площадь S действует сила F, то гидростатическое давление

    Если площадка S расположена в жидкости не горизонтально, то в разных ее точках гидростатическое давление оказывается не одинаковым – оно зависит от глубины.

    При неограниченном уменьшении площадки в предельном случае можно получить давление в точке

    (12)

    В дальнейшем эту величину мы будем называть гидростатическим давлением, а применительно к газам — аэродинамическим давлением.

    Из соотношения F/ S следует, что гидростатическое давление измеряется в единицах силы, отнесенных к единице поверхности.

    В международной системе единиц (система СИ) за единицу силы принимают силу, которая массе в 1 кгсообщает ус­корение в 1 м/с 2 . Такая сила называется ньютоном (н),

    1 кг веса = 1 кг = 9,81 н

    1. Атмосферное давление Рат (измеряется барометрами).
    2. Избыточное, или манометрическое давление — Ризб. (измеряет­ся манометрами).
    3. Абсолютное или полное давление, т.е. давление с учётом атмосферного — Рабс.
    4. Вакуум — разрежение, т.е. недостаток давления до атмосфер­ного – Рвак

    Исходя из этих определений, можно записать:

    За единицу давления в системе СИ принимают 1 н/м 2 (1Па), но эта единица очень мала, а поэтому в технических расчётах часто поль­зуются единицей в 10 5 раз больше, чем 1 н/м 2 . Такая единица на­зывается бар

    1 бар = 10 5 н/м 2

    Часто применяют кратные единицы кн/м 2 и мн/м 2 или кПа, МПа.

    В прежней технической системе единиц, которая ещё используется в литературе, за единицу силы принимают силу, с которой масса в 1 кг притягивается к поверхности земли, т.е. силу, которая равна массе в 1 кг и сообщает ускорение g = 9,81 м/сек 2 . Следовательно, 1 кг веса =9,8 н/м 2 , но и эта же единица слишком мелкая для практических расчётов во всём диапазоне дав­лений. Поэтому пользуются более крупной единицей давления — тех­нической атмосферой:

    1 т.ат = 1 кг/см 2 = 10 4 кг/м 2 = 9,8 ·10 4 н/м 2 = 0,98 ·10 5 н/м 2 =

    1 техн.атм. = 735,6 мм рт.ст.

    Кроме технической атмосферы пользуются ещё и поня­тием физической атмосферой. Физическая атмосфера — это давление численно равное атмосферному давлению, которое уравновешивается столбом ртути высотой 760 мм рт.ст.

    Одна физическая атмосфера равна 1,0336 технических атмос­фере

    Энергия газов или работа, которую совершает сила в 1 н на пути движения по направлению действия силы в 1 м, измеряется в джоулях.

    Энергию газов можно выразить в разных относительных еди­ницах, если отнести её к единице веса или к единице объёма газа. Поэтому удельная энергия газа, отнесенная к единице веса, будет иметь следующую единицу измерения

    Получили размерность напора в метрах движущегося газа (жидкости). Если отнести энергию потока к единице объема, то получим размерность

    = н/м 2 = Па

    Получили размерность давления, как силы, действующей на еди­ницу площади. В печной практике используется внесистемная единица давления кг/м 2 . Если 1 кг воды разлить на площадке в 1 м 2 , то высота столба воды будет равна 1 мм. Поэтому такая единица давления была названа мм. водяного столба

    1 кг/м 2 = 1 мм. вод. ст. = 9,81 н/м 2

    Энергия, которую имеет газ при давлении, состоит из потен­циальной и кинетической, В механике газов энергию принято на­зывать давлением или напором. Под напором понимают разность давлений между давлением среды и атмосферным давлением. Имеют место четыре вида давления(напора).

    1.Статическое (пьезометрическое ) давление или напор;

    2. Геометрическое давление или геометрический напор;

    3. Скоростное (динамическое) давление или напор;

    4. Давление или напор, затрачиваемые на различного рода сопротивления (потери напора).

    В печной теплотехнике статическое давление называют также статическим напором газа, под которым понимается разность между давлением газов в трубопроводе или каналах и атмосферным давлением, при этом отрицательную разность называют разрежением (разрежение, создаваемое дымовой трубой называют тягой).

    Подъёмные силы газов, обусловленные разностью плотностей, создают геометрический напор или геометрическое дав­ление. Геометрический напор или давление есть напор или давление положения частички газа относительно некоторого уровня. Геомет­рическим напором газ обладает в том случае, если его плотность отличается от плотности окружающего атмосферного воздуха и эти частицы газа располагаются на разных высотах.

    Гео­метрический напор рассчитывается аналитически по формуле,

    , н/м 2 (14)

    где Н — высота газового столба , м;

    плотность окружающей среды, плотность воздуха, кг/м 3 ;

    — плотность лёгкого (нагретого) газа, кг/м 3 .

    Пример. Сосуд открытый с нижнего конца высотой 10 м напол­нен горячим газом, имеющим температуру Т=546°С, плотность газа = 1,34 кг/м 3 (при 0 о С и нормальном давлении 1,00 бар). Плотность окружающего воздуха = 1,293 кг/м 3 и температу­ра его 20°С .Требуется определить геометрический напор или дав­ление на верхнюю стенку

    = 10·9,81(1,34-1,293)= 74,5 н/м 2

    Силы инерции создают динамический или скоростной напор или давление, которые рассчитываются по формуле:

    , н/м 2 (2,9)

    где Wt, Wо — скорости движения газов соответственно при

    данной температуре газа и при нормальных усло­виях, м/сек;

    t — температура движущегося газа, °С.

    Если скоростной напор газов выразить в мм вод.ст., то рас­чётная формула будет:

    мм вод.ст

    Свойства гидростатики

    Гидростатика изучает законы равновесия (покоя) жидкостей и газов. Представим себе сосуд, наполненный жидкостью, находящийся в покое. Мысленно выделим в этой жидкости элементарную площадку ΔS и рассмотрим ус­ловия его равновесия, приложив к нему поверхностные силы, действующие со стороны окружающей его жидкости.(рис.2)

    Рис. 2 Напряжение поверхностной силы

    Предположим, что на эту площадку, напри­мер, действует сила Р, направленная под некоторым углом к этой площадке. В этом случае эту силу можно было бы разложить на две составляющие: лежащую в плоскости касательную силу Рτ и нормальную силу Рп . Такие две силы (равные по величине Рп и Рт, но противоположные по направ­лению) действовали бы со стороны элемента А на покоящуюся жидкость.

    Из опыта известно, что жидкость оказывает сопротивление сжимаю­щим нормальным усилием и в то же время способна деформироваться под действием как угодно малых касательных сил. Таким образом, существо­вание силы Ртвызвала бы внутри жидкости течение, нарушая тем самым состояние покоя. Отсюда следует первое свойство: при покое жидкости силы, взаимодействующие между отдельными объёмами жидкости, а так же силы, с которыми покоящаяся жидкость действует на стенки сосудов, нап­равлены перпендикулярно к поверхности, ограничивающей рассматриваемые объёмы жидкости.

    Второе свойство или основная теорема гидростатики: гидростати­ческое давление в данной точке не зависит от того, как ориентирова­на площадка в пространстве, которой принадлежит данная точка. Иначе говоря, как бы мы не проводим сечение через неко­торую точку вжидкости, гидростатическое давление на площадке, вклю­чающей в себя эту точку, будет отличаться только направлением, сох­раняя свою величину.

    Для различных точек жидкости величина гидроста­тического давления будет различной, т.е. гидростатическое давление в точке является функцией координат.

    Кинематика газов и жидкости

    В механике газов и жидкостей существует ряд понятий и определений, на основе которых построены основные закономерности. Рассмотрим их.

    Представляя себе частицу жидкости (газа) исчезающее малого объема, можно говорить о том что она находится в той или иной точке пространства. С течением времени она проходит непрерывный ряд точек, совокупность которых называется троекторией данной частицы жидкости. Поскольку в данный момент времени скорость движения частиц зависит от положения частиц в пространстве, т.е. является функцией координат, можно записать W =f (x,y,z) для данного момента времени. В проекциях на оси координат времени

    (16.а)

    В любой точке пространства скорость может изменятся во времени, тогда в самой общей форме можно записать

    (16.б)

    Под установившимся движением подразумевается такое движение жидкости (газа), при котором не только скорость но и все другие характеристики жид кости (плотность, давление, силы) не зависят от времени и остаются постоянными для каждой точке пространства.

    Линией тока называют воображаемую кривую, проведенную в жидкости таким образом, что каждая частица жидкости, находящаяся на ней в данный момент времени, имеет скорость, совпадающую по направлению с касательной к этой кривой. В установившемся потоке линии тока совпадают с троекториями жидких частиц (рис.3)

    Рис.3 Линии тока
    Рис. 4 Трубка тока

    Введем понятие «трубка тока» или «элементарная струйка». Вообразим внутри жидкости произвольный замкнутый контур и предположим, что по своим размерам он очень мал. Через каждую точку этого контура можно провести линии тока, соответствующие данному моменту времени. В результате такого построения получим замкнутую цилиндрическую поверхность, состоящую из непрерывного ряда линий тока. Получим трубчатую поверхность, которая называется трубка тока или элементарная струйка (рис.4). Свойство трубки тока – частицы жидкости, находящиеся внутри нее не могут ни вытекать, ни втекать через ее боковую поверхность. Площадь сечения элементарной струйки, нормальное направление линий тока, называют живым сечением или просто сечением струйки. Жидкость может втекать и вытекать только через поперечное сечение струйки.

    Последнее изменение этой страницы: 2016-09-18; Нарушение авторского права страницы

    Источник

    Читайте также:  Минимально допустимое давление в дыхательных аппаратах
    Adblock
    detector