Меню

Как определить газ по массе давлению температуре и объему

Объем, масса, плотность, удельный объем. Приведение к нормальным и стандартным условиям и пересчет

Приведение к нормальным и стандартным условиям

Единицей измерения объема газа является кубический метр (м³). Измеренный объем приводится к нормальным физическим условиям.

Нормальные физические условия: давление 101 325 Па, температура 273,16 К (0 °С).

Стандартные условия: давление 101 325 Па, температура 293,16 К (+20 °С).

В настоящее время эти обозначения выходят из употребления. Поэтому в дальнейшем следует указывать те условия, к которым относятся объемы и другие параметры газа. Если эти условия не указываются, то это значит, что параметры газа даны при 0 °С (273,16 °К) и 760 мм рт. ст. (1,033 кгс/см²). Иногда объем газа (особенно в иностранной литературе и нормах) при пользовании системой СИ приводится к 288,16 °К (+15 °С) и давлению 1 бар (105 Па).

Если известен объем газа при одних условиях, то пересчитать его в объемы при других условиях можно с помощью коэффициентов, приведенных следующей таблице.

Коэффициенты для пересчета объемов газа из одних условий в другие

Температура и даление газа 0 °С и 760 мм рт. ст. 15 °С и 760 мм рт. ст. 20 °С и 760 мм рт. ст. 15 °С (288,16 °К) и 1 бар
0 °С и 760 мм рт. ст. (норм. условия) 1 1,055 1,073 1,069
15 °С и 760 мм рт. ст. (в зар. литературе) 0,948 1 1,019 1,013
20 °С и 760 мм рт. ст. (ст. условия) 0,932 0,983 1 0,966
15 °С (288,16 °К) и 1 бар (СИ) 0,936 0,987 1,003 1

Для приведения объемов газа к 0 °С (273,16 °К) и 760 мм рт. ст. (1,033 кгс/см²), а также к 20 °С (293,16 °К) и 760 мм рт. ст. (1,033 кгс/см²) могут быть применены следующие формулы:

где V0 °С и 760 мм рт. ст. — объем газа при 0 °С и 760 мм рт. ст., м³;
V20° С и 760 мм рт. ст. — объем газа при 20 °С и 760 мм рт. ст., м³;
VP — объем газа в рабочих условиях, м³;
р — абсолютное давление газа в рабочих условиях, мм рт. ст.;
Т — абсолютная температура газа в рабочих условиях, °К.

Читайте также:  Препараты при гипертензии внутричерепного давления

Пересчет объемов газа, приведенных к 0 °С и 760 мм рт. ст., а также к 20 °С и 760 мм рт. ст., в объемы при других (рабочих) условиях можно производить по формулам:

Любой газ способен расширяться. Следовательно, знание объема, который занимает газ, недостаточно для определения его массы, так как в любом объеме, целиком заполненном газом, его масса может быть различной.

Масса — это мера вещества какого-либо тела (жидкости, газа) в состоянии покоя; скалярная величина, характеризующая инерционные и гравитационные свойства тела. Единицы массы в СИ — килограмм (кг).

Плотность, или масса единицы объема, обозначаемая буквой p, — это отношение массы тела m, кг, к его объему, V, м³:

или с учетом химической формулы газа:

где M — молекулярная масса,
VМ — молярный объем.

Единица плотности в СИ — килограмм на кубический метр (кг/м³).

Зная состав газовой смеси и плотность ее компонентов, определяем по правилу смешения среднюю плотность смеси:

Величину, обратную плотности, называют удельным, или массовым, объемом (ν) и измеряют в кубических метрах на килограмм (м³/кг).

Как правило, на практике, чтобы показать, на сколько 1 м³ газа легче или тяжелее 1 м³ воздуха, используют понятие относительная плотность d, которая представляет собой отношение плотности газа к плотности воздуха:

Данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями статьи 437 Гражданского кодекса РФ. Для получения информации об условиях сотрудничества, пожалуйста, обращайтесь к сотрудникам ГК «Газовик».

Бесплатная телефонная линия: 8-200-2000-230

© 2007–2020 ООО «Газ-Сервис». Все права защищены.
Использование материалов сайта без разрешения владельца запрещено и будет преследоваться по закону.

Источник

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Калькулятор ниже предназначен для решения задач на использование уравнения Клапейрона-Менделеева, или уравнение состояния идеального газа. Некоторая теория изложена под калькулятором, ну а чтобы было понятно, о чем идет речь — пара примеров задач:

Читайте также:  Очень сильно кружится голова низкое давление что делать

Примеры задач на уравнение Менделеева-Клапейрона

В колбе объемом 2,6 литра находится кислород при давлении 2,3 атмосфер и температуре 26 градусов Цельсия .
Вопрос: сколько молей кислорода содержится в колбе?

  • Некоторое количество гелия при 78 градусах Цельсия и давлении 45,6 атмосфер занимает объем 16,5 литров.
    Вопрос: Каков объем этого газа при нормальных условиях? (Напомню, что нормальными условиями для газов считается давление в 1 атмосферу и температура 0 градусов Цельсия)
  • В калькулятор вводим начальные условия, выбираем, что считать (число моль, новые объем, температуру или давление), заполняем при необходимости оставшиеся условия, и получаем результат.

    Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

    Теперь немного формул.

    где
    P — давление газа (например, в атмосферах)
    V — объем газа (в литрах);
    T — температура газа (в кельвинах);
    R — газовая постоянная (0,0821 л·атм/моль·K).
    Если используется СИ, то газовая постоянная равна 8,314 Дж/K·моль

    Так как m-масса газа в (кг) и M-молярная масса газа кг/моль, то m/M — число молей газа, и уравнение можно записать также

    где n — число молей газа

    И как нетрудно заметить, соотношение

    есть величина постоянная для одного и того же количества моль газа.

    И эту закономерность опытным путем установили еще до вывода уравнения. Это так называемые газовые законы — законы Бойля-Мариотта, Гей-Люссака, Шарля.

    Так, закон Бойля-Мариотта гласит (это два человека):
    Для данной массы газа m при неизменной температуре Т произведение давления на объем есть величина постоянная.

    Закон Гей-Люссака (а вот это один человек):
    Для данной массы m при постоянном давлении P объем газа линейно зависит от температуры

    Закон Шарля:
    Для данной массы m при постоянном объеме V давление газа линейно зависит от температуры

    Посмотрев на уравнение, нетрудно убедиться в справедливости этих законов.

    Уравнение Менделеева-Клапейрона, также как и опытные законы Бойля-Мариотта, Гей-Люссака и Шарля справедливы для широкого интервала давлений, объемов и температур. То есть во многих случаях эти законы удобны для практического применения. Однако не стоит забывать, что когда давления превышают атмосферное в 300-400 раз, или температуры очень высоки, наблюдаются отклонения от этих законов.
    Собственно, идеальный газ потому и называют идеальным, что по определению это и есть газ, для которого не существует отклонений от этих законов.

    Читайте также:  Классификация протезов жевательное давление

    Источник

    Связь между давлением, температурой, объемом и количеством молей газа («массой» газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

    Связь между давлением, температурой, объемом и количеством молей газа («массой» газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

    Ограничения практической применимости:

    • температуры ниже -100°C и выше температуры диссоциации / разложения
    • давления выше 90 бар
    • вакуум глубже чем 99%

    Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

    • в СИ R= 8,3144 Дж/(моль*К) — это основная (но не единственная) инженерная система измерений в РФ и большинстве стран Европы
    • в СГС R= 8,3144*10 7 эрг/(моль*К) — это основная (но не единственная) научная система измерений в мире
    • m-масса газа в (кг)
    • M-молярная масса газа кг/моль (таким образом (m/M) — число молей газа)
    • P-давление газа в (Па)
    • Т-температура газа в ( °K)
    • V-объем газа в м 3

    Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) — что верно для большинства газов в указанных выше пределах применимости.

    1) Доставка объемов газа одинаковой массы при одинаковом давлении но различных температурах.

    Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

    Пусть счетчик (расходомер) в точке доставки дает объемные накопленные расходы V1 и V2, при температурах, соответственно, T1 и T2 и, пусть T1 V2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

    • показатели объемного счетчика газа тем «весомее», чем выше давление
    • выгодно поставлять газ низкого давления
    • выгодно покупать газ высокого давления

    Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

    Источник

    Adblock
    detector