Меню

Какие будут температура и давление если передали количество теплоты

Первый закон термодинамики.

Первое начало (первый закон) термодинамики — это закон сохранения и превращения энер­гии для термодинамической системы.

Согласно первому началу термодинамики, работа может совершаться только за счет теплоты или какой-либо другой формы энергии. Следовательно, работу и количество теплоты измеряют в одних единицах — джоулях (как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Первый закон термодинамики формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:

,

где A’ — работа, совершаемая системой (A’ = -A).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника (т. е. только за счет внутренней энергии).

Действительно, если к телу не поступает теплота (Q — 0), то работа A’, согласно уравнению , совершается только за счет убыли внутренней энергии А’ = -ΔU. После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа, так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится опреде­ленное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам .

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам.

Изохорный процесс.

Зависимость р(Т) на термодинамической диаграмме изображается изохорой.

Изохорный (изохорический) процесс — термодинамический процесс, происходящий в систе­ме при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется (ΔV= 0), и, согласно первому началу термоди­намики ,

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа (А = рΔV=0) газом не совершается.

Источник

СПАДИЛО.РУ

Тепловое равновесие

Задание №10 Единого Государственного Экзамена по физике посвящено тепловому равновесию. Мы приводим краткую теорию ниже, а потом разбираем несколько вариантов!

Теория к заданию №10 ЕГЭ по физике

Удельная теплота плавления обозначается греческой буквой λ (лямбда). Количество теплоты Q, которое необходимо для того, чтобы расплавить кристаллическое тела массой m, вычисляется по формуле:

В процессе кристаллизации вещество теряет энергию, выделяя (отдавая) столько же теплоты, сколько ее поглощается при плавлении. Потому при расчете количества теплоты, затрачиваемого на кристаллизацию вещества, пользуются той же формулой, но со знаком «–»:

Читайте также:  Сильная потливость при повышенном давлении

Тепловая мощность равна количеству теплоты, затраченной на нагревание в единицу времени.

Уравнение Менделеева – Клапейрона имеет вид:

Количество теплоты Q, которое нужно для того, чтобы изменить температуру тела на ΔТ (или ∆t) градусов, определяется по формуле

где c – удельная теплоемкость, m – масса физ.тела. ∆T=∆t, поскольку 1К=1 0 С.

Разбор типовых заданий №10 ЕГЭ по физике

Демонстрационный вариант 2018

Для плавления льда при температуре его плавления требуется количество теплоты, равное 3 кДж. Этот кусок льда внесли в тёплое помещение. Зависимость температуры льда от времени представлена на рисунке. Определите среднюю тепловую мощность, подводимую к куску льда в процессе плавления.

Алгоритм решения:
  1. Рассматриваем график изменения состояния льда. Анализируем условие. Определяем кол-во теплоты, передаваемое от горелки.
  2. Определяем мощность горелки.
  3. Записываем ответ.
Решение:

1. Рассматриваем график, заданный в условии задания. Сначала на протяжении 5 мин лёд нагревался до температуры плавления. Затем температура не меняется. Это означает, что лед нагрелся до температуры плавления и десять минут таял. С 15-й по 25-ую минуту нагревается вода, получившаяся после таяния льда. Горелка все 25 минут работала равномерно, подавая тепло ко льду. Потому чтобы определить Q, переданное льду, достаточно знать его значение на одном из временных промежутков. В условии известно, что на таяние льда затрачено 3 кДж теплоты, в течение 10 мин.

2.Теплота, которая передавалась льду в ед.времени, равна 3:10=0,3 кДж в 1 мин. Это и есть тепловая мощность. Переведем ее в СИ: 0,3 кДж=300 Дж; 1 мин=60 с. Отсюда получаем: 300 Дж/1 мин = 300/60 = 5 (Вт).

Первый вариант задания (Демидова, № 1)

В закрытом сосуде при температуре 373 К под поршнем находится водяной пар под давлением 30 кПа. Каким станет давление пара, если, сохраняя его температуру неизменной, объём пара уменьшить в 3 раза?

Алгоритм решения:
  1. Записываем уравнение состояния газа (Менделеева – Клапейрона), выражаем из него давление.
  2. Сравниваем величины давления.
  3. Вычисляем давление после изменения объема.
  4. Записываем ответ.
Решение:

Второй вариант задания (Демидова, № 11)

Определите, каково должно быть примерное отношение масс железного и алюминиевого тел, чтобы при получении одного и того же количества теплоты они нагрелись на одно и то же число градусов. Ответ округлите до целых.

Алгоритм решения:
  1. Записываем формулу для определения количества теплоты железа.
  2. Записываем формулу для определения количества теплоты алюминия.
  3. Приравниваем значения теплоты, выражаем оттуда отношение масс тел.
  4. Записываем ответ.
Решение:

Третий вариант задания (Демидова, № 20)

Какое количество теплоты выделится при кристаллизации 120 г свинца, взятого при температуре плавления?

Алгоритм решения:
  1. Записываем формулу определения количества теплоты, отдаваемого телом при кристаллизации.
  2. Подставляем данные в задаче числовые значения величин, вычисляем искомую величину.
  3. Записываем ответ.
Читайте также:  Как влияет на работу эжектора атмосферное давление
Решение:

1. В процессе кристаллизации вещества происходит выделение количества теплоты Q = λm, которое требуется для плавления.

2. Масса свинцового тела равна m = 120 г =12·10 -2 кг, а удельная теплота плавления равна λ= 2,5∙10 4 Дж/кг. Подставим эти значения в формулу:

Источник

Какие будут температура и давление если передали количество теплоты

«Физика — 10 класс»

В каких процессах происходят агрегатные превращения вещества?
Как можно изменить агрегатное состояние вещества?

Изменить внутреннюю энергию любого тела можно, совершая работу, нагревая или, наоборот, охлаждая его.
Так, при ковке металла совершается работа, и он разогревается, в то же время металл можно разогреть над горящим пламенем.

Также если закрепить поршень (рис. 13.5), то объём газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Внутренняя энергия может увеличиваться и уменьшаться, поэтому количество теплоты может быть положительным и отрицательным.

Процесс передачи энергии от одного тела другому без совершения работы называют теплообменом.

Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты.

Молекулярная картина теплообмена.

При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии более нагретого тела передаётся менее нагретому телу.

Количество теплоты и теплоёмкость.

Вам уже известно, что для нагревания тела массой т от температуры t1 до температуры t2 необходимо передать ему количество теплоты:

При остывании тела его конечная температура t2 оказывается меньше начальной температуры t1 и количество теплоты, отдаваемой телом, отрицательно.

Коэффициент с в формуле (13.5) называют удельной теплоёмкостью вещества.

Удельная теплоёмкость — это величина, численно равная количеству теплоты, которую получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К.

Удельная теплоёмкость газов зависит от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объёме, когда газ будет только нагреваться.

Жидкие и твёрдые тела расширяются при нагревании незначительно. Их удельные теплоёмкости при постоянном объёме и постоянном давлении мало различаются.

Удельная теплота парообразования.

Для превращения жидкости в пар в процессе кипения необходима передача ей определённого количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведёт к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.

Читайте также:  Ваз 21103 на холостых моргает давление масла

Величину, численно равную количеству теплоты, необходимой для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования.

Процесс испарения жидкости происходит при любой температуре, при этом жидкость покидают самые быстрые молекулы, и она при испарении охлаждается. Удельная теплота испарения равна удельной теплоте парообразования.

Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).

Очень велика удельная теплота парообразования воды: rН20 = 2,256 • 10 6 Дж/кг при температуре 100 °С. У других жидкостей, например у спирта, эфира, ртути, керосина, удельная теплота парообразования меньше в 3—10 раз, чем у воды.

Для превращения жидкости массой m в пар требуется количество теплоты, равное:

При конденсации пара происходит выделение такого же количества теплоты:

Удельная теплота плавления.

При плавлении кристаллического тела всё подводимое к нему тепло идёт на увеличение потенциальной энергии взаимодействия молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Величину, численно равную количеству теплоты, необходимой для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления и обозначают буквой λ.

При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.

Удельная теплота плавления льда довольно велика: 3,34 • 10 5 Дж/кг.

«Если бы лёд не обладал большой теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передаётся льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега». Р. Блек, XVIII в.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Количество теплоты, выделяемой при кристаллизации тела, равно:

Уравнение теплового баланса.

Рассмотрим теплообмен внутри системы, состоящей из нескольких тел, имеющих первоначально различные температуры, например теплообмен между водой в сосуде и опущенным в воду горячим железным шариком. Согласно закону сохранения энергии количество теплоты, отданной одним телом, численно равно количеству теплоты, полученной другим.

Отданное количество теплоты считается отрицательным, полученное количество теплоты — положительным. Поэтому суммарное количество теплоты Q1 + Q2 = 0.

Если в изолированной системе происходит теплообмен между несколькими телами, то

Уравнение (13.10) называется уравнением теплового баланса.

Здесь Q1, Q2, Q3 — количества теплоты, полученной или отданной телами. Эти количества теплоты выражаются формулой (13.5) или формулами (13.6)—(13.9), если в процессе теплообмена происходят различные фазовые превращения вещества (плавление, кристаллизация, парообразование, конденсация).

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Источник

Adblock
detector