Меню

Какое давление оказывает жидкость на дно сосуда 6 вариант

Какое давление оказывает жидкость на дно сосуда 6 вариант

Формулы, используемые на уроках «Задачи на давление жидкостей и газов».

Название величины

Обозначение

Единица измерения

Формула

Высота столба жидкости

h = p / (pg)

Плотность жидкости

кг/м 3

p = p / (gh)

Давление

p = pgh

Постоянная

g ≈ 10 Н/кг

Физика 7 класс: все формулы и определения МЕЛКО на одной странице

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача № 1. Определить давление бензина на дно цистерны, если высота столба бензина 2,4 м, а его плотность 710 кг/м 3

Задача № 2. Какая жидкость находится в сосуде, если столб высотой 0,3 м оказывает давление 5400 Па ?

Задача № 3. Плотность спирта 800 кг/м 3 . Какова будет высота столба спирта при давлении 2,4 кПа?

Задача № 4. В цилиндре с маслом на поршень действует сила 40 Н. Чему равна сила давления на внутреннюю поверхность цилиндра площадью 8 дм 2 ? Площадь поршня 2,5 см 2 . Вес масла не учитывайте.

Задача № 5. Вычислите давление и силу давления керосина на дно бака площадью 50 дм 2 , если высота столба керосина в баке 40 см.

Задача № 6. Площадь малого поршня гидравлического пресса равна 10 см 2 , большого — 50 см 2 . На малый поршень поместили гирю массой 1 кг. Какой груз нужно поместить на большой поршень, чтобы жидкость осталась в равновесии?

Задача № 7. Рыба камбала находится на глубине 1200 м и имеет площадь поверхности 560 см 2 . С какой силой она сдавливается водой?

Задача № 8. На какой глубине давление воды в море равно 412 кПа?

Задача № 9 (повышенной сложности). Брусок массой m = 2 кг имеет форму параллелепипеда. Лежа на одной из граней, он оказывает давление p1 = 1 кПа, лежа на другой — давление 2 кПа, стоя на третьей — давление 4 кПа. Каковы размеры бруска?

ОТВЕТ: 5 см х 10 см х 20 см.

РЕШЕНИЕ. Обозначим размеры бруска а, b, с, где а > b > с. Тогда из условия следует, что b = а/2, с = а/4, p1 = mg/(ab) = 2mg/a 2 . Отсюда , а = 20 см.

Задача № 10 (олимпиадный уровень). Оцените массу атмосферы Земли (радиус Земли R = 6400 км)

ОТВЕТ: примерно 5 • 10 18 кг

РЕШЕНИЕ. Вес атмосферы равен силе давления воздуха на всю поверхность Земли, площадь которой S = 4πR 2 . Следовательно, mg = ра • 4πR 2 , где ра = 10 5 Па — атмосферное давление. Отсюда m = 4πR 2 ра /g = 5 • 10 18 кг. Эта величина составляет менее одной миллионной части полной массы нашей планеты. Такая простая оценка массы атмосферы возможна потому, что основная часть атмосферы сосредоточена на высотах, малых по сравнению с радиусом Земли. Поэтому можно считать, что вес атмосферы равен mg, где g — ускорение свободного падения вблизи поверхности Земли.

Теория для решения задач.

Давление жидкости на покоящееся в ней тело называют гидростатическим давлением. Гидростатическое давление на глубине h равно р = ратм + p*g*h

Читайте также:  Давление масла горит лампочка на горячем двигателе холостые обороты

Закон Паскаля. Жидкость и газ передают оказываемое на них давление во всех направлениях одинаково.

Конспект урока «Задачи на давление жидкостей».

Источник

Все, что необходимо знать о силе давления воды

Пловец, нырнувший глубоко, ощущает боль в ушах. На барабанные перепонки воздействует сила давления воды.

Корабль в воде не тонет благодаря выталкивающей силе. Вода способна легко изменять свою форму, она воздействует на поверхности тел при соприкосновении с ними.

Чему равна сила давления воды и что это такое, расскажем в статье.

Что это такое?

В сосуде, заполненном водой, на дно давит сила, равная весу столба жидкости. Это вызванное силой тяжести давление называется гидростатическим.

Законы гидростатики описал Блез Паскаль. В 1648 г. он удивил горожан опытом, демонстрирующим свойства воды.

Вставив в бочку, заполненную водой, длинную узкую трубку, он налил в нее несколько кружек воды, и бочку разорвало.

Согласно закону Паскаля, приложенное к H2O усилие распространяется равномерно во всем объеме. Это объясняется тем, что вода почти не сжимается. В гидравлических прессах используют это свойство.

Плотность воды все же растет при высоком давлении. Это учитывается при расчетах конструкций глубоководных аппаратов.

Факторы, влияющие на показатель

При отсутствии внешнего воздействия, играют роль два фактора:

Выше уровень воды, налитой в сосуд, — выше напор на дно. Если в одной емкости ртуть, а в другой вода и при этом уровни жидкостей одинаковы, то в первом случае давление на дно больше, так как ртуть имеет большую плотность.

Если же к поверхности приложить поршень и давить на него, то напор будет складываться из:

При этом форма сосуда не определяет размер усилия, создаваемого столбом. Оно будет одним и тем же при равной высоте столба, хотя стенки емкости могут расширяться кверху или сужаться.

На дно и стенку сосуда – в чем разница?

Вода, заполняющая емкость, оказывает давление по направлению всегда перпендикулярно поверхности твердого тела, по всей площади соприкосновения с дном и стенками.

Усилие на дно распределено равномерно, то есть оно одинаково в любой точке. Заполнив водой сито, можно увидеть, что струи, текущие через отверстия, равны по напору.

Единицы измерения

Давление воды измеряют в:

  • паскалях – Па;
  • метрах водяного столба – м. в. ст.
  • атмосферах – атм.

Практически достаточно знать, что 1 атмосфера равна 10 метрам водяного столба или 100000 Па (100кПа).

Формулы расчета

Давление на дно сосуда рассчитывается делением силы на площадь, то есть оно равно произведению плотности воды, высоты столба и ускорения свободного падения g (величина постоянная, равна 9,8 м/с2).

Читайте также:  Производители шлангов высокого давления в россии

Пример расчета: бак наполнен водой (плотность 1000 кг/м3) до высоты 1,2 м. Нужно найти, какое давление испытывает дно бака. Решение: P = 1000*1, 2*9, 8 = 11760 Па, или 11, 76 кПа.

Для расчета давления на стенки сосуда применяют все ту же формулу напора, приведенную выше. При расчете берется глубина от точки, в которой нужно рассчитать напор, до поверхности воды.

Пример расчета: на глубине 5 м на стенку резервуара с водой будет оказываться давление P=1000 *5 * 9, 8=49000 кПа, что составляет 0,5 атмосферы.

Расчет давления воды на дно и стенки сосуда в видео:

Применение на практике

Примеры использования знаний свойств воды:

  1. Подбирая насос для водоснабжения дома высотой 10 м, понимают, что напор должен быть минимум 1 атм.
  2. Водонапорная башня снабжает водой дома ниже ее по высоте, напор в кране у потребителей обеспечен весом столба воды в баке.
  3. Если в стенках бочки появились отверстия, то, чем ниже они расположены, тем более прочным должен быть материал для их заделки.
  4. Замеряют дома напор холодной воды в кране манометром. Если он менее чем 0,3 атм (установлено санитарными нормами), есть основания для претензий к коммунальщикам.

Используя гидравлический пресс, можно получить большое усилие, при этом приложив малую силу. Примеры применения:

  • выжимка масла из семян растений;
  • спуск на воду со стапелей построенного судна;
  • ковка и штамповка деталей;
  • домкраты для подъема грузов.

Заключение

Такие свойства воды, как текучесть и несжимаемость, дают возможность использовать силу ее давления для самых различных целей.

Опасность этого явления учитывают при расчетах на прочность корпусов подводных лодок, стенок и днищ резервуаров, в которых хранят воду. Сила давления воды совершает полезную работу, она же способна и разрушать.

Источник

Статика. Давление покоящейся жидкости на дно и стенки сосуда (гидростатическое давление).

Жидкости (и газы) передают по всем направлениям не только внешнее давление, но и то дав­ление, которое существует внутри них благодаря весу собственных частей.

Давление, оказываемое покоящейся жидкостью, называется гидроста­тическим.

Получим формулу для расчета гидростатического давления жидкости на произвольной глубине h (в окрестности точки A на рисунке).

Сила давления, действующая со стороны вышележащего узкого столба жидкости, может быть выражена двумя способами:

1) как произведение давления p в основании этого столба на площадь его сечения S:

2) как вес того же столба жидкости, т. е. произведение массы m жидкости на ускорение сво­бодного падения:

Масса жидкости может быть выражена через ее плотность p и объем V:

а объем — через высоту столба и площадь его поперечного сечения:

Подставляя в формулу (1.28) значение массы из (1.29) и объема из (1.30), получим:

Приравнивая выражения (1.27) и (1.31) для силы давления, получим:

Читайте также:  Где применяется гидростатическое давление

Разделив обе части последнего равенства на площадь S, найдем давление жидкости на глубине h:

Это и есть формула гидростатического давления.

Гидростатическое давление на любой глубине внутри жидкости не зависит от формы сосуда, в котором находится жидкость, и равно произведению плотности жидкости, ускорения свободно­го падения и глубины, на которой определяется давление.

Важно еще раз подчеркнуть, что по формуле гидростатического давления можно рассчитывать давление жидкости, налитой в сосуд любой формы, в том числе, давление на стенки сосуда, а так­же давление в любой точке жидкости, направленное снизу вверх, поскольку давление на одной и той же глубине одинаково по всем направлениям.

Гидростатический парадокс .

Гидростатический парадокс — явление, заключающееся в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления жидкости на дно сосуда.

В данном случае под словом «парадокс» понимают неожиданное явление, не соответствующее обычным представлениям.

Так, в расширяющихся кверху сосудах сила давления на дно меньше веса жидкости, а в сужа­ющихся — больше. В цилиндрическом сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на разный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрическом сосуде.

Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости: p = pgh (формула гидростатического давления жидкости). А так как площадь дна у всех сосудов одинакова, то и сила, с которой жидкость давит на дно этих сосу­дов, одна и та же. Она равна весу вертикального столба ABCD жидкости: P = oghS, здесь S — площадь дна (хотя масса, а следовательно, и вес в этих сосудах различны).

Гидростатический парадокс объясняется законом Паскаля — способ­ностью жидкости передавать давление одинаково во всех направлениях.

Из формулы гидростатического давления следует, что одно и то же количество воды, находясь в разных сосудах, может оказывать разное дав­ление на дно. Поскольку это давление зависит от высоты столба жидкости, то в узких сосудах оно будет больше, чем в широких. Благодаря этому даже небольшим количеством воды можно создавать очень большое давле­ние. В 1648 г. это очень убедительно продемонстрировал Б. Паскаль. Он вставил в закрытую бочку, наполненную водой, узкую трубку и, подняв­шись на балкон второго этажа, вылил в эту трубку кружку воды. Из-за малой толщины трубки вода в ней поднялась до большой высоты, и давле­ние в бочке увеличилось настолько, что крепления бочки не выдержали, и она треснула.

Источник

Adblock
detector