Меню

Описание процесса литья под давлением пластмасс

История и технология литья пластмасс

Современные пластмассы, как мы их знаем сегодня, берут свое начало с конца 19 века, когда многие европейские и американские химики экспериментировали с различными типами резины и остатков химических смесей.

В 1865 году Джон У. Хаятт запатентовал процесс объединения нитрат целлюлозы и камфоры, полученный состав он назвал «целлулоид», который был использован в качестве материала для замены слоновой кости в производстве бильярдных шаров. Целлулоид широко использовался для производства фотопленки и кинопленки.

Первый формовочный материал был изобретен в 1907 году Лео Хендрик Baekeland, которым был фенольный материал, он назвал его «Бакелит». Бакелит был универсальный и прочный материал, который использоваться для изготовления бытовой, промышленной и военной продукции.

На протяжении 20-го века были разработаны многие новые пластиковые материалы в том числе: вискоза в 1891 году; целлофан в 1913 году; нейлон в 1920; поливинилхлорид (ПВХ) в 1933; тефлон в 1938 году; полиэтилен в 1933 году.

С 1950-х годов, производство пластмасс переросло в крупную отрасль переживающую бурный рост, который не спадает до сих пор. Сегодня с постоянным развитием промышленности, появились всевозможные модификации и новые пластические материалы.

Существует два основных вида пластмасс: Термопластичные и Термореактивные материалы.

Оригинальное литьё пластмасс остаётся в целом неизменным вплоть с 1946 года, когда вторая мировая война создала огромный спрос на недорогие, изделия массового производства. Джеймс Хендри построил первую винтовую (шнековую) машину литья под давлением и совершил революцию в индустрии пластмасс. Сегодня, примерно 95% всех формовочных машин использовать винты (шнеки) для эффективного обогрева и смешивания, и впрыскивания пластмассы в форму.

ОПИСАНИЕ ТЕХНОЛОГИИ ЛИТЬЯ ПЛАСТМАСС

Большая часть пластических масс состоит из двух основных компонентов:

высокомолекулярного органического вещества — смолы, явля­ющейся связующим материалом пластмассы и определяющей ос­новные свойства пластмассы;

различного рода наполнителей, изменяющих в нужном напра­влений свойства пластмасс.

Кроме наполнителей в состав пластмасс часто вводят пласти­фикаторы, стабилизаторы, смазывающие вещества, красители и др. Введение, например, асбеста, талька, стекла повышает тепло­стойкость. Графита, фторопласта, дисульфидмолибдена уменьшает коэффициент трения и увеличивает износостойкость. Асбеста, барита улучшает фрикционные свойства. Слюды, кварцевой муки, стекла, шпата повышает электроизоляционные свойства. Цветных металлов улучшает теплопроводность и т. д.

Однако следует заметить, что введение наполнителей, как правило, приводит к увеличению давления переработки и пло­щади сечения литниковых каналов при литье, а также способст­вует интенсификации изнашивания формы и литьевой маши­ны. При конструировании формы эти факторы необходимо учи­тывать.

По химической природе смолы пластмассы подразделяют на два вида: термореактивные и термопластичные.

Термореактивными называют пластмассы, которые при пере­работке претерпевают необратимые физико-химические превра­щения, превращаются в твердые неплавкие материалы и повтор­ной переработке не поддаются. Термопластичные пластмассы при переработке претерпевают только физические превращения, за­твердевают при охлаждении и допускают повторную перера­ботку.

Литье под давлением – процесс, во время которого материал переводится в вязко-текучее состояние и затем впрыскивается под давлением в форму, где происходит оформление изделия.

Методом литья под давлением производят штучные изделия массой от долей грамма до десятков килограммов. Этот способ является наиболее распространенным в переработке большинства промышленных термопластов. Кроме того, литьем под давлением производят изделия армированные, гибридные, полые, многоцветные, из вспенивающихся пластиков и др.

Основным оборудованием процесса является термопласт-автомат, оснащенный пресс-формами.

Отличительной особенностью метода является его цикличность, что ограничивает его производительность.

К основным достоинствам литья под давлением относятся:

  • универсальность по видам перерабатываемых пластиков,
  • высокая производительность,
  • высокое качество получаемых изделий,
  • возможность изготовления деталей весьма сложной конфигурации или тонкостенных изделий,
  • отсутствие дополнительной обработки конечного продукта (за исключением операции удаления литников),
  • полная автоматизация процесса.
  • литьевые машины являются сложными и недешевыми устройствами, насыщенными современными техническими решениями;
  • применение термопласт-автоматов для реализации конкретного технологического процесса требует квалифицированного технико-экономического обоснования.

Принципиально, суть технологии литья под давлением состоит в следующем (рис. 1). Расплав полимера подготавливается и накапливается в материальном цилиндре литьевой машины (в данном случае — червячного типа) к дальнейшей подаче в сомкнутую форму (позиция «а»).
Затем материальный цилиндр смыкается с узлом формы, а пластикатор (в нашем случае — невращающийся червяк) в процессе осевого движения перемещает расплав в форму (позиция «б»). В результате чего форма заполняется расплавом полимерного материала, а пластикатор смещается в крайнее левое (на рисунке) положение (позиция «в»).
Далее расплав в форме застывает (или отверждается — в случае реактопластов) с образованием твердого изделия (позиция «г»). Материальный цилиндр продолжает оставаться в сомкнутом с системой формы положении. В этой ситуации червяк начинает вращаться с заданной скоростью, подготавливает и транспортирует расплав в переднюю зону материального цилиндра и при этом отодвигается назад. В конце накопления требуемого объема расплава вращение червяка прекращается. Он занимает исходное положение.
После завершения процесса затвердевания (отверждения) пластмассы форма размыкается, и изделие удаляется из нее (позиция «д»). Для облегчения съема изделия материальный цилиндр может к этому моменту отодвинуться от узла формы. Далее цикл литья под давлением повторяется.

Рис. 1

Процесс литья под давлением можно разбить на следующие стадии:

1. Дозирование материала и загрузка его в цилиндр.
2. Пластикация материала.
3. Впрыск пластифицированного материала в сомкнутую форму и выдержка его под давлением.
4. Охлаждение изделия в форме.
5. Размыкание формы и удаление изделия из неё.

К технологическим параметрам литья под давлением относятся: температура пластикационного цилиндра, температура формы, удельное давление литья и продолжительность стадий цикла.

Температура пластикации должна быть выше температуры текучести полимера на 10 – 20°С. При более высоких температурах уменьшается вязкость расплава, облегчаются условия формования, повышается производительность литьевой машины, но увеличивается скорость термической и термоокислительной деструкции.

Температура формы должна быть меньше температуры размягчения полимера, но слишком низкая температура формы может быть препятствием к нормальному её заполнению при впрыске.

Читайте также:  Что принимать гипотонику при повышении давления

Выбор оптимальной температуры определяется способностью полимера к кристаллизации, скоростью кристаллизации, его теплофизическими свойствами, а также конструктивными особенностями формы, давлением литья и температурой поступающего в форму расплава.

Время цикла формования определяется временем пластикации материала, временем впрыска материала в форму и выдержки под давлением, временем охлаждения изделия в форме.

Время пластикации зависит от теплопроводности полимера и характеристик нагревательного цилиндра. На общее время цикла почти не влияет.

Стадия выдержки под давлением заканчивается в момент застывания расплава в впускных каналах. Затрачиваемое время зависит от температуры расплава и формы, а также от формы и размеров литниковой системы.

Время охлаждения определяется температурой расплава, формы и объемом отливки. Вносит наибольший вклад в общее время цикла.

Усилие смыкания формы и удельное давление литья характеризуют конструктивные особенности узла смыкания и определяют возможность изготовления изделия на данном термопластавтомате и максимальную площадь отливаемого изделия.

Узел смыкания и впрыска

Основную часть отходов при литье под давлением составляет материал, застывший в литниковых системах. Для уменьшения литниковых отходов в настоящий момент производители используют «горячеканальные» формы, которые дают также ряд других преимуществ.
Все отходы литьевого производства могут быть использованы для вторичной переработки.

Источник

Технология формования изделий из пластмасс методом литья под давлением.

Суть технологии.

Литье под давлением — метод формования изделий из полимерных материалов, заключающийся в нагревании материала до вязкотекучего состояния и передавливании c большой скоростью его в закрытую (сомкнутую) литьевую форму, где материал приобретает конфигурацию внутренней по­лости формы и затвердевает.

Этим методом получают изделия массой от нескольких граммов до нескольких килограммов с толщиной стенок 1—20 мм (чаще 3—6 мм). Для осуществления литья под давлением чаще всего применяют шнековые литьевые машины (термопластавтоматы с червячной пластикацией), на которых устанавливают литьевые формы различной конструкции.

Принципиально, суть технологии литья под давлением состоит в следующем (рис. 10.1). Расплав полимера подготовлен и накоплен (l = nom) в материальном ци­линдре литьевой машины к дальнейшей подаче в сомкнутую форму (позиция а). Далее, материальный цилиндр смыкается с узлом фор­мы, а пластикатор (в данном случае — невращающийся червяк) осевым движением со скоростью Voc перемещает расплав в форму (позиция б). В результате осевого движе­ния червяка форма заполняется расплавом полимерного материала, а пластикатор сме­щается в крайнее левое (на рисунке) положение (позиция в, l = 0). Далее расплав в фор­ме застывает (или отверждается — в случае реактопластов) с образованием твердого изделия (позиция г). Материальный цилиндр продолжает оставаться в сомкнутом с си­стемой формы положении. В этой ситуации червяк начинает вращаться с ωч = nom, подготавливает и транспортирует расплав в переднюю зону материального цилинд­ра и при этом отодвигается назад. После накопления требуемого объема расплава (расстояние l = nom) вращение червяка прекращается (ωч = 0). Он занимает исходное к дальнейшим действиям положение. После завершения процесса затверде­вания пластмассы фор­ма размыкается, и изделие удаляется из нее (позиция д). Для обеспечения требуемого температурного поля в литьевой форме обогреваемый материальный цилиндр отодвигается в сторону от формы. Далее цикл повторяется.

-Технологический процесс литья под давлением

Технологический процесс литья изделий из термопластичных полимеров состоит из следующих операций:

1) плавление, гомо­генизация и дозирование полимера;

3) подвод узла впрыска к форме;

5) выдержка под давлением и отвод узла впрыска;

6) охлаждение изделия;

7) рас­крытие формы и извлечение изделия.

— Плавление, гомогенизация и дозирование расплава

Данная операция осуществляется периодически через равные промежутки времени и с постоянной для каждого конкретного изделия частотой вращения шнека. Плавление полимера проис­ходит за счет передачи теплоты от нагретых стенок цилиндра, а также вследствие диссипации энергии вязкого течения расплава и трения гранул. Во время впрыска расплава шнек не вращается, поэтому нагревание гранул происходит только за счет теплопере­дачи.

Операция дозирования осуществляется в результате пере­мещения полимера в переднюю часть цилиндра при вращении шнека. Вращение шнека включается после окончания выдержки под давлением предыдущего цикла литья и уменьшения давления в цилиндре термопластавтомата. При давлении впрыска (60-140 МПа) нагрузка на шнек очень велика и вращение его не­допустимо. Дозирование сопровождается сжатием и нагреванием гранул с последующим переходом полимера в вязкотекучее со­стояние. Для обеспечения хорошей гомогенизации расплава во время дозирования с помощью поршня узла впрыска на шнеке создается усилие подпора, поэтому шнек отходит не свободно, а преодолевая давление подпора. Следует заметить, что давле­ние подпора увеличивает температуру расплава и повышает ее однородность по сечению в каналах шнека.

Шнеки литьевых машин конструктивно отличаются от экструзионных. Они обычно имеют меньшую длину (L/D = 15-17) и степень сжатия для них равна i = 2-2,5. Это объясняется тем, что в литьевых машинах не требуется создания во время дозиро­вания высоких давлений и не нужна очень хорошая гомогениза­ция, так как при впрыске происходит дополнительный нагрев расплава и он хорошо перемешивается вследствие течения в лит­никовых каналах. Недостаток в гомогенизации при дозировании восполняется на последующей технологической операции, т. е. при впрыске расплава в форму.

Для предотвращения передачи давления литья (инжекции) на полимер, находящийся в винтовом канале червяка, на его головной части устанавливается наконечник с обрат­ным клапаном (рис. 10.6). Это, во-первых, позволяет при впрыске сохранить неизмен­ным подготовленный к инжекции объем расплава, и, во-вторых, исключить полностью или в значительной степени образование встречного, обратного, потока расплава, снижающего пластикационную способность червяка.

Форма и действие наконечника с клапаном должны быть такими, чтобы расплав также не застаивался в зоне накопления. С этой целью используют так называемые са­моочищающиеся наконечники (рис. 10.6, а). Для низковязких расплавов могут исполь­зоваться наконечники с шариковым клапаном (рис. 10.6, б), а для нетермостабильных ПВХ наконечники с гребневидной нарезкой конической части (рис. 10.6, в).

Для полимерных материалов типа непластифицированного ПВХ на червяках устанавливают длинноконусные наконечники без кла­панов (рис. 10.7). Такая конструкция исключает образова­ние застойных зон, а благодаря высокой вязкости расплава его обратное течение по узкому коническому зазору между конусом червяка и корпусом сопла, к тому же с возрастающим диаметром, практически исключаются.

Читайте также:  Топливный насос высокого давления шкода йети

В конце впрыска конический хвостовик шнека входит в коническое отверстие сопла, поэтому расплав почти полностью выдавливается из цилиндра, за счет чего уменьшается время его пребывания в нагретом состоянии и исключается термическая деструкция полимера. Чтобы расплав во время дозирования не вытекал из отверстия сопла, узел впрыска не отводят от формы или выходное отверстие мундштука перекры­вается клапаном. Наиболее часто это осуществляется с помощью самозапирающегося сопла.

Объем дозы расплава задается значением хода шнека вдоль цилиндра при его вращении за счет изменения расстояния между кулачками конечных выключателей. После того как наберется определенная порция расплава, шток при отходе назад нажимает на конечный выключатель и вращение шнека прекращается.

В отличие от экструзии температура по зонам цилиндра при литье под давлением устанавливается значительно выше. Это необходимо для уменьшения вязкости расплава, чтобы в мо­мент впрыска в отверстиях сопла и литников не возникали боль­шие перепады давлений. Однако при очень высокой температуре на изделиях образуется облой, т. е. расплав очень сильно затекает в зазоры по линии разъема формы. Поэтому температуру расплава выбирают, учитывая:

· толщину сте­нок изделия;

· площадь поверхности отливки;

· реологические свойства полимера;

· раз­меры литниковых каналов;

-Смыкание формы и подвод узла впрыска

После окончания паузы, предусматриваемой по завершении операции извлечения отливки, изготовленной в предыдущем цикле, включается механизм смыкания. Смыкание формы осуществляется в результате перемещения подвижной плиты ТПА вместе с закрепленной на ней разъемной частью формы и создания определенного усилия. Усилие смыкания Nсм необходимо для исключения раскрытия формы в момент заполнения ее расплавом, оно должно быть равно:

;

где рф — давление в форме, усредненное по площади отливки; Fизд и Fл.c. — пло­щадь изделия и литниковой системы в плоскости разъема формы.

В том случае, когда площадь отливки очень велика и расчетное усилие превышает максимальное усилие смыкания машины, отформованные изделия имеют толстый облой. Иногда по этой же причине может произойти раскрытие формы.

Подвод узла впрыска к форме производится отдельным меха­низмом, при этом сопло цилиндра упирается в литниковую втулку формы и создается необходимое давление, исключающее утечку расплава. В момент подвода узла впрыска сопло должно рас­полагаться соосно с литниковым каналом формы.

— Впрыск расплава

При осевом движении шнека вдоль цилиндра к соплу во время впрыска клапан шнека смещается, перекрывает каналы, исключая обрат­ное течение расплава по винтовым каналам шнека. Расплав полимера под действием давления начинает течь через литниковую систему в фор­мующую полость формы, заполняет ее, а затем под действием давления

Рис. 7.4. Цикл-диаграмма процесса литья под давлением: 0а — заполнение формы расплавом; ab — сжатие; bc — вы­держка под давлением; cd — охлаждение изделия
Рис. 7.5. Схема заполнения формующей полости расплавом в струйном (а) и в лами­нарном (б) режимах: 1 — впускной литник; 2 — стенки формы; 3 — струя расплава; 4 — твердый слой по­лимера; 5 — фронт течения расплава.

сжимается. Так как заполнение формы происходит в течение очень короткого времени (1-3 с), эту операцию назы­вают впрыском. Вначале расплав заполняет литниковые каналы формы, а затем формующую полость, поэтому давление постепенно повышается. Изменение давления при впрыске показано на рис. 7.4 (отрезок Оа).

В зависимости от скорости впрыска и вязкости расплава изменяется количество теплоты, выделяющейся вслед­ствие диссипации энергии вязкого течения, и происходит допол­нительный разогрев полимера.

Изменение температуры при литье под давлением показано на рис. 7.4.

Характер заполнения формы расплавом зависит от скорости впрыска и размеров формующей полости. Так, при очень высокой скорости впрыска расплав после выхода из литников движется в формующей полости вначале зигзагообразно (рис. 7.5, а), а по мере заполнения полости формы расплавом происходит уплотне­ние отдельных зигзагов и струйный режим переходит в лами­нарный — течение сплошным потоком, (рис. 7.5, б).

Рис. 7.8. Заполнение полости формы расплавом при наличии арматуры или формующих знаков: 1 — формующий знак; 2 — линия спая.

На характер течения расплава оказывает также влияние наличие в формующей полости знаков или арматуры. При обтека­нии их поток расплава разделяется, и при слиянии этих потоков на противоположной стороне образуется линия спая (рис. 7.8). После огибания арматуры или знака два потока встречаются друг с другом кромкой фронта, где расплав уже частично охлажден, и дальше продолжают двигаться без взаимного перемещения, т. е. между ними отсутствует сдвиг слоев. Такой характер движения не способствует прочному соединению потоков, и изделие полу­чается со стыковым швом, по которому при нагружении проис­ходит разрушение. Для уменьшения влияния стыковых швов на прочность изделия литье под давлением следует проводить при высоких температурах расплава и формы, а также при по­вышенной скорости впрыска. Стыковые швы можно упрочнить за счет правильного подвода литника к формующей полости.

После заполнения формы полимером происходит дальнейшее увеличение давления до заданного значения и сжатие расплава, вследствие чего плотность его возрастает. До значения рф давле­ние повышается в течение короткого времени (доли секунды) (см. отрезок ab на рис. 7.4). Давление выбирается из условия до­стижения необходимой плотности расплава, чтобы в процессе охлаждения не происходило значительного уменьшения объема. При недостаточном сжатии увеличивается усадка изделия и могут образовываться раковины или утяжины.

-Выдержка под давлением

После заполнения формы расплавом происходит его охлажде­ние, в результате чего увеличивается плотность и уменьшается объем, занимаемый полимером. Вследствие уменьшения объема через литники в форму продолжает поступать дополнительная порция расплава и давление в ней поддерживается постоянным. Таким образом, после окончания операции впрыска наступает некоторое равновесие давлений в цилиндре машины и в форму­ющей полости и течение переходит в медленное дополнительное нагнетание расплава (подпитку); последняя компенсирует умень­шение объема полимера в форме при его охлаждении.

Читайте также:  Точки на теле человека чтобы поднять давление
Рис. 7.9. Цикл-диаграмма литья при различ­ных режимах: 0abcd — оптимальный режим; 0ab»c»d» — вы­сокое давление в форме; 0abc’fd’ — малая вы­держка под давлением

Выдержка под давлением (отрезок на рис 7.4) обычно про­должается до тех пор, пока расплав в центральной части впускного литника не охладиться ниже температуры текучести. Чем больше выдержка под давлением, тем сильнее понижается температура расплава в формующей полости, поэтому при последующем охлаждении размеры изделия изменяются меньше. То же наблюдается при повышении давления в форме. Таким образом, выдержка под давлением компенсирует усадочные процессы, происходящие в форме, и зависит от размеров литника, температуры рас­плава и формы, а также от тепло-физических свойств полимера. Вы­держка под давлением целесооб­разна, пока полимер в форму­ющей полости находится в рас­плаве, поэтому глубину впускного литника обычно выбирают с учетом заданной усадки, но меньше толщины стенки изделия.

Давление при выдержке рассчитывают с учетом всех техно­логических параметров процесса, а также размеров литников. При правильно выбранном давлении после выдержки при охла­ждении в формующей полости остается некоторое остаточное давление рост. Если чрезмерно увеличить давление в форме (диаг­рамма Оab»c»d» на рис. 7.9), то в конце цикла литья остаточное давление рост, будет очень большим. Под действием рост полимер плотно прижимается к стенкам формующей полости, силы трения возрастают, поэтому затрудняется извлечение изделий из формы и при выталкивании может произойти их разрушение.

Обратная картина наблюдается при малой выдержке под давлением или создании низкого давления в форме. Если сопло машины отводится раньше, чем произойдет охлаждение расплава в литнике, полимер вытекает из формы и давление падает (диаграмма Oabc’fd’ на рис. 7.9). Из-за недостаточной компенсации усадочных процессов на изделиях в этом случае появляются утяжины и раковины (пустоты) или увеличивается усадка.

-Охлаждение изделия

Фактически охлаждение расплава начинается сразу после впрыска расплава, однако как отдельная технологическая опера­ция охлаждение задается с помощью реле времени по окончании выдержки под давлением. Таким образом, выдержка при охлажде­нии необходима для окончательного затвердевания расплава полимера и достижения определенной конструкционной жестко­сти изделий, исключающей их деформацию при извлечении из формы.

Температура полимера перед размыканием формы должна быть такой, чтобы при извлечении изделия не произошло его коробления или разрушения. В процессе охлаждения температура расплава уменьшается, а так как объем остается неизменным, то давление в форме снижается (отрезок cd на рис. 7.9).

Литьевые изделия могут иметь весьма разнообразную конфи­гурацию и размеры, поэтому на процесс охлаждения оказывает влияние разнотолщинность стенок, которая служит основной при­чиной появления внутренних остаточных напряжений. Если изделие имеет различ­ную толщину стенок, то после охлаждения степень ориентации будет различной и это вызовет появление остаточных напряжений. При извлечении таких изделий из формы может произойти их коробление или с течением времени образуются микротрещины. Коробление возможно и у изделий, не имеющих разнотолщинности стенок, в случае их неравномерного охлаждения. Поэтому конструкция охлаждающих каналов формы должна обеспечивать равномерное температурное поле.

Рис. 7.10. Коробление изделий вследствие неравномерного охлаждения (T’ф > Tф) (а) и при неправильном расположении литника (б»).

Зависит коробление и от расположения литника в форме (рис. 7.10, б). При литье коробчатых изделий литник, как пра­вило, подводится к днищу. При подведении литника к боковым стенкам может произойти их коробление вследствие неодинаковой степени ориентации макромолекул. Таким образом, для получения качественных изделий необходимо создавать одинаковые условия течения расплава и равномерную скорость охлаждения.

-Раскрытие формы и извлечение изделия

После окончания операции охлаждения происходит раскрытие формы. Подвижная часть формы 3, закрепленная на плите узла смыкания, отводится, при этом изделие 4 уходит вместе с ней (рис. 7.12). Выступающая часть толкателей 2 упирается в ограни­читель 1 и они останавливаются вместе с изделием 4, а подвижная часть формы 3 отводится дальше, за счет чего происходит извлечение изделия. Одновременно с изделием из литниковой втулки извлекается литник. Расплав при течении из центрального лит­ника затекает в отверстие плиты 3, которое имеет обратный ко­нус, и застывает в нем. В результате образуется замок, с помощью которого при раскрытии формы происходит извлечение литника из литниковой втулки.

При изготовлении втулок или коробок для извлечения их из формы можно использовать плиту съема (рис. 7.13). При отводе подвижной части формы 2 изделия 6 остаются на знаках 5 и дви­жутся вместе с ними. Когда толкатели 3 упрутся в неподвижный ограничитель 1, плита съема 4 остановится, а подвижная часть формы 2 со знаками 5 будет продолжать отходить влево, при этом изделия 6 задерживаются плитой 4 и снимаются со знаков 5. В формах с плитой съема литник извлекается из литниковой втулки с помощью знака 7, имеющего на торце сферический вы­ступ. В момент впрыска расплав охватывает этот выступ и после охлаждения удерживается на нем. В момент размыкания формы литник из канала извлекается знаком 7, а затем срывается со сферического выступа плитой съема 4 вместе с изделиями.

Рис. 7.12. Извлечение изделия толкателем: 1 — ограничитель; 2 — толкатели; 3 — подвижная часть формы; 4 — изделие; 5 — литник. Рис. 7.13. Извлечение изделия плитой съема: 1 — ограничитель; 2 — подвижная часть формы; 3 — толкатель; 4 — плита съема; 5 — формующий знак; 6 —изделие; 7 — литниковый знак.

При производстве изделий из полимеров, обладающих сильной адгезией, для уменьшения прилипания полимера к поверхности формующей полости на нее после извлечения изделия с помощью специальных аэрозольных баллончиков наносят антиадгезионную смазку. Обычно смазку наносят после нескольких циклов литья. При изготовлении армированных изделий цикл литья завершается установкой в форму арматуры, которую иногда перед этим подогревают.

Источник

Adblock
detector