Меню

Повышенное гидростатическое давление в сосудах это

Гидростатическое давление: формула и свойства.

Гидростатическое давление – это давление, производимое на жидкость силой тяжести.

Гидростатикой называется раздел гидравлики, в котором изучаются законы равновесия жидкостей и рассматривается практическое приложение этих законов.

Для того, чтобы понять гидростатику необходимо определиться в некоторых понятиях и определениях.

Содержание статьи

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

ρ – плотность жидкости

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

представлет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м 2 ) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м 2 = 1*10 3 Н/м 2

меганьютон на квадратный метр – 1МН/м 2 = 1*10 6 Н/м 2

Давление равное 1*10 5 Н/м 2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м 2 ), в технической системе – килограмм-сила на квадратный метр (кгс/м 2 ). Практически давление жидкости обычно измеряют в кгс/см 2 , а давление равное 1 кгс/см 2 называется технической атмосферой (ат).

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см 2 = 0,98 бар = 0,98 * 10 5 Па = 0,98 * 10 6 дин = 10 4 кгс/м 2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см 2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Читайте также:  Резко подскочило кровяное давление участился пульс
Измерение гидростатического давления

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:
Оно направлено по внутренней нормали к площади, на которую действует;
Величина давления в данной точке не зависит от направления (т.е. от ориентированности в пространстве площадки, на которой находится точка).

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.

Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Источник

Повышенное гидростатическое давление в сосудах это

Исследования газовых пузырьков в тканях экспериментальных животных и образцах крови при декомпрессии в стеклянных камерах, проведенные Бойлем в 1670 г., создали предварительную основу для современных гипотез о патофизиологии декомпрессии. Эти гипотезы — «суррогат» результатов нескольких параллельных направлений исследования, появившегося в прошлом веке. Важнейшие из них следующие:

1. Влияние повышенного гидростатического давления на живые ткани как изолированной переменной.
2. Влияние повышенного парциального давления как нейтрального газа, так и метаболических газов на ткани.
3. Регуляция поглощения и элиминации в тканях нейтрального газа (а следовательно, и появление в тканях нерастворенного нейтрального газа).
4. Механическое воздействие нерастворенного газа (высвобожденного из раствора) на неподвижные ткани и сердечнососудистую систему.
5. Влияние поверхности газового пузырька (местное и отдаленное).

Читайте также:  По целевому назначению приборы давления подразделяются на

Совпадения этих «специфических» явлений декомпрессии с физиологическими проявлениями обусловлены физической нагрузкой, тепловым потоком и другим «неспецифическим» стрессором.

Влияние повышенного гидростатического давления

Несмотря на то что воздействие повышенного гидростатического давления обязательно предшествует всем декомпрессионным ситуациям при погружениях, экспериментальному установлению влияния такого воздействия на развитие в последующем симптомов, связанных с декомпрессией, было уделено недостаточное внимание. Установлено, что давление само по себе может оказывать глубокие влияния на биологические системы от простых до сложных проявлений.

И если рассматривать организм в целом, то эти эффекты представляют конечные результаты сложного комплекса взаимодействий на молекулярном, субклеточном, клеточном и тканевом уровнях. Наиболее очевидным кратковременным воздействием давления является нарушение функции мембран в возбуждаемых клетках. И, действительно, «нервный синдром высокого давления» (НСВД), как считали, представляет (хотя бы отчасти) сложное дисфункциональное состояние ЦНС, вызванное давлением. Было показано, что в изолированно перфузируемой ткани сердца животного при абсолютном давлении 100—150 мкг/см2 возникают изменения проводимости, ведущие к аритмии. Эти изменения зависят от скорости компрессии, давления и температуры [Doubt, Hogan, 1980].

Современные данные о воздействии на человека абсолютного давления 65 и 69 кгс/см2 в состоянии насыщения тканей организма нейтральным газом навели на мысль, что другие «возбудимые» клетки, а именно кровяные пластинки могут изменять свое поведение при таком большом давлении [Andersen, Bennett, 1981]. Показано также, что повышенное гидростатическое давление влияет как на активность мембранного натриевого насоса, так и коэффициент распределения ионов хлора в красных клетках крови человека [Goldinger et al., 1980].

В исследованиях на одноклеточных организмах продемонстрированы довольно резкие изменения механизмов гомеостаза клетки под воздействием давления, причем обратимость этих изменений, по-видимому, зависит от продолжительности воздействия. Следовательно, интуитивно кажется ясным, что указанное равновесие, вследствие воздействия давления на многоклеточные организмы, будет наиболее чувствительно к продолжительности воздействия очень высокого давления.

Кроме того, поскольку определенные изменения у простейших организмов под воздействием давления могут происходить на уровне синтеза нуклеиновых кислот, функции полисом, сборки митотических веретен (при этом, возможно, изменяется как синтез белка в клетке, так и репродуктивная способность), по-видимому, у тканей с высоким уровнем обмена, таких как гастроинтестинальный эпителий, кожа и гематопоэтическая ткань, будет снижен митоз, созревание и трансформации.

В результате длительной экспозиции давления могут быть повреждены эндотелиальные клетки, в которых ферменты, связанные с мембраной, синтезируют защитные простагландины [Weksler et al., 1978]. Кроме того, может также нарушиться функция макрофагов и Б-лимфоцитов, молекулярные механизмы которых чувствительные к давлению, отвечают за взаимодействие с антигенами, клеточное превращение и синтез иммуноглобулина.

Вероятно, величина этих изменений коррелирует (по крайней мере не сильно) с величиной гидростатического давления и продолжительностью экспозиции. Следовательно, давление само по себе может вызвать изменения в клетке, которые будут беспрепятственно существовать в период декомпрессии после длительного пребывания в состоянии насыщения тканей организма нейтральным газом и давать измененные субстраты, посредством которых декомпрессионные нарушения могут накладываться одно на другое.

Другие явления, такие как гемоконцентрация, лейкоцитоз и увеличение в плазме уровней реактивных белков острой фазы, которые долгое время считали предвестниками или спутниками болезни декомпрессии, были обнаружены во время компрессии и нахождения на грунте при очень глубоководных погружениях. Это наводит на мысль, что время наблюдения за данными показателями критично в отношении причинности [Andersen, Bennett, 1981].

Хотя планирование постановки большинства экспериментов ведет к выявлению данных феноменов во время и после декомпрессионной фазы погружения, экспозиция повышенного гидростатического давления, по-видимому, тоже способна вызвать эти изменения. Однако после неглубоководного и кратковременного погружения в воздушной среде такие явления лучше всего коррелируют с тяжестью декомпрессии.

— Вернуться в оглавление раздела «Физиология человека.»

Источник

Осмотическое, гидростатическое и онкотическое давление плазмы крови, их значение в транскапиллярном обмене жидкости.

Осмотическое давление – диффузное давление (термодинамический параметр), характеризующий стремление раствора к понижению концентрации при соприкосновении с чистым растворителем вследствие встречной диффузии молекул растворённого вещества и растворителя. Осмотическое давление численно равно давлению, которое оказало бы растворённое вещество, если бы оно при данной температуре находилось в состоянии идеального газа и занимало объём, равный объёму раствора.

Читайте также:  Зеленый китайский чай повышает давление или понижает давление

Осмотическое давление плазмы крови создается растворенными в ней ионами (в основном создается ионами Na и Cl) и равно 304 мОсм/л. Но неионизированные вещества плазмы крови также создают осмотическое давление – так, каждый грамм глюкозы в литре плазмы крови создает давление 5,6 мОсм.

Гидростатическое давление плазмы крови – давление жидкой части крови на стенки сосудов. Гидростатическое давление плазмы крови различна в различных отделах кровеносной системы.

Коллоидно-осмотическое (онкотическое) давление плазмы крови – осмотическое давление, создаваемое белками плазмы. Онкотическое давление в основном создается альбуминами плазмы. Несмотря на высокое содержание белков в плазме крови достигает (70-80 г/л), их концентрация в ней весьма невелика, около 0,8 ммоль/л, поэтому осмотическое давление, формируемое белками, равно 0,8 мОсм/л.

Однако плазма крови с указанным количеством белков создает осмотическое давление равное 1,3-1,5 мОсм/л. Объясняется это тем, что белки, будучи отрицательно заряженными ионами, удерживают вблизи своих молекул большое число положительно заряженных ионов (катионов, в основном ионов натрия). Эти добавочные катионы увеличивают величину осмотически активных веществ в плазме крови и делают ее осмотическое давление примерно на 50% больше, чем создаваемое только белками (эффект равновесия Даннона).

Значение осмотического, гидростатического и онкотического давления в транскапиллярном обмене жидкости.

Осмотическое, гидростатическое и онкотическое давление являются основными факторами, благодаря которому происходит постоянный обмен водой между плазмой крови и интерстициальной жидкостью.

В артериальном конце капилляров силы, выталкивающие жидкость из сосудов превышают силы, удерживающие жидкость в сосудах:

· капиллярного давления (выталкивает воду из сосуда) – равно 30 мм рт.ст.;

· давление интерстициальной жидкости (выталкивает воду из сосудов) – -3 мм рт.ст.;

· коллоидно-осмотическое давление интерстициальной жидкости (выталкивает жидкость из сосудов) – 8мм рт.ст.;

· коллоидно-осмотическое давление плазмы крови (удерживает жидкость в сосудах) – 25-28 мм рт.ст.

Если суммировать величину всех сил, выталкивающих жидкость из сосудов (капиллярное давление – 30, давление интерстициальной жидкости – 3, коллоидно-осмотическое давление интерстициальной жидкости – 8), то получится величина 41 мм рт.ст., что превышает силу, удерживающего жидкость в сосудах (коллоидно-осмотическое давление плазмы крови – 25-28) на 13-16 единиц.

Таким образом, величина фильтрационного (величина силы, выталкивающего жидкость из сосуда) давления на артериальном конце капилляров составляет 13-16 мм рт.ст. В результате в артериальной части капилляра имеет место выход воды (составляющий 0,5% плазмы крови) в интерстициальное пространство.

А в венозной же части капилляра гидростатическое давление крови снижается до 10 мм рт.ст., при этом сумма сил, выталкивающих жидкость из сосудов (капиллярное давление – 10, давление интерстициальной жидкости – 3, коллоидно-осмотическое давление интерстициальной жидкости – 8) становится меньше силы, удерживающего (онкотическое давление плазмы крови – 25-28 мм рт.ст.) жидкость к капиллярах.

При этом возврат воды из интерстиция в капилляр составляет 90% от объема жидкости, профильтровавшейся в артериальной части капилляра – остальное количество жидкости возвращается из интерстиция в кровоток по лимфатическим сосудам.

Онкотическое давление белков плазмы крови является одним из факторов, обеспечивающим постоянное поступление воды в кровеносные капилляры из тканей. При заболеваниях почек, при которых имеет место потеря альбуминов с мочой (альбуминурия), онкотическое давление плазмы крови резко снижается, жидкость задерживается в тканях и у больного возникают отеки.

Следует отметить, что осмотическое давление влияет не только на распределение воды между кровью и интерстициальной жидкостью, но и между последней и клетками организма.

Дата добавления: 2018-08-06 ; просмотров: 2855 ;

Источник

Adblock
detector