Меню

Система поддержания давления сжатого воздуха

Устройство и принцип работы регулятора давления

Регулятор давления газа или редукционный клапан предназначен для снижения давления в линии отводимой от основной и поддержании этого давления на постоянном уровне.

Регуляторы давления используют для поддержания давления, необходимого для работы пневматического, газового или другого оборудования.

Например, редукционные клапаны устанавливаются на баллоны с газом и позволяют настроить необходимое давление в линии отводимой к потребителю. Редукционные клапаны, установленные на баллонах часто называют редукторами давления, так как они редуцируют или снижают давление в отводимой линии (reduction — сокращение, уменьшение, снижение).

Устройство регулятора давления

Принципиальная схема регулятора давления показана на рисунке.

В корпусе клапана установлена пружина 1, поджатие который регулируется винтом 2. Пружина через мембрану 3 и толкатель 4 воздействует на седельный клапан 7, на который в противоположном направлении воздействует пружина 8.

Давление на выходе зависит от величины зазора между клапаном 7 и седлом 5, кроме того оно воздействующие на мембрану 3 через канал 6.

Представленный клапан имеет два канала входной и выходной, поэтому его называют двухлинейным.

Регулятор давления с фильтром

Это устройство совмещает в себе редукционный клапан и фильтр, который очищает сжатый воздух от примесей, частиц грязи, пыли. Подробнее об устройстве и принципе действия такого регулятора (РДФ) можно узнать здесь https://izpk.ru/reduktor-rdf-3-1-rdf-3-2.

Как работает регулятор давления?

В исходом состоянии газ поступает на вход клапана, протекает в зазоре между седлом и клапаном и поступает на выход. Величина зазора определяется степенью поджатия пружины, которое изменяется с помощью регулировочного винта. Получается, что давление на выходе зависит от давления на входе и величины зазора между клапаном 7 и седлом 5.

В случае, если давление на выходе вырастет, то под его воздействием мембрана переместится и сожмет пружину, которая, в свою очередь, переместит клапан 7, проходное сечение уменьшится. Потери давления на нем возрастут, что вызовет падение давление в отводимой линии до величины настройки.

Если давление на выходе регулятора упадет ниже установленной величины, давление с которым газ воздействует на мембрану уменьшится, в результате снизится поджатие пружины 1. Клапан 7 переместится и увеличит проходное сечение. Потери на нем снизятся, что вызовет рост давления в отводимой линии до величины настройки.

Как регулятор поддерживает давление на постоянном уровне

Получается, что величина давления в отводимой линии поддерживается на постоянном уровне, за счет изменения величины потерь на регуляторе. Регулятор настраивается с помощью регулировочного винта, который изменяет поджатие пружины 1, управляющее воздействие на клапан через мембрану оказывает давление газа из отводимой линии.

Давление на выходе регулятора определяется как разность между давлением на входе и величиной потерь давления на клапане.

Трехлинейный регулятор давления

Регулятор имеющий помимо входного и выходного каналов еще и дополнительный — для сброса воздуха при критическом повышении давления называют трехлинейным.

Конструкция этого регулятора отличается от конструкции двухлинейного наличием отверстия в мембране, которое открывается в случае если давление превысит критическую величину. В обычных условиях регулятор работает также как и двухлиненый.

Если давление на выходе возрастает до значения, достаточного чтобы переместить мембрану в крайнее верхнее положение и открыть канал сброса. Газ через этот канал отправляется в атмосферу. Давление в отводимой линии снижается до тех, пока усилия пружины не будет достаточно чтобы закрыть канал сброса.

Так как сброс избыточного давления осуществляется в атмосферу, трехлинейные регуляторы представленной конструкции используют для регулирования давления воздуха.

Таким образом, принцип действия регулятора давления газа, схож в принципом действия гидравлического редукционного клапана, показанном на видео.

Источник

Сообщества › Всё о Краске и Покраске › Блог › Как сделать пневмолинию в гараже/сервисе

Напоминаю о том как выбрать компрессор:

Итак после выбора компрессора и его покупки, источник сжатого воздуха приобретен, осталось дело за малым — построить пневмолинию, да, да, даже для гаража она нужна. Казалось бы, зачем усложнять? Подсоединяй шланги, включай компрессор — и работай. Что ж, многие так и поступают. И гробят технику, начиная покупать и конструировать кучу фильтров и задавать вопросы: скажите, а почему. Как же организовать пневмосеть «по уму»? Если вы располагаете лишними средствами, можете воспользоваться услугами опытных специалистов, устроивших за свою жизнь не одну пневмолинию. Тем же, кто вынужден рассчитывать на собственные силы, должны пригодиться рекомендации из нашей сегодняшней статьи.

Читайте также:  Как работают датчики давления в шинах mazda

Сегодня вы узнаете:

1 Система снабжения сжатым воздухом: слагаемые качества
2 Место для установки компрессора
3 Пневмомагистраль
3.1 С чего начать?
3.2 Материал трубопровода
3.2.1 Сталь и оцинковка
3.2.2 Пластик
3.2.3 Алюминий
3.3 Диаметр труб
3.4 Точный расчет диаметра трубопровода
3.4.1 Пример расчета
3.5 Шланги и разъемы
4 Правила монтажа: уклоны, замкнутый контур, «гусиная шея»
СИСТЕМА СНАБЖЕНИЯ СЖАТЫМ ВОЗДУХОМ: СЛАГАЕМЫЕ КАЧЕСТВА

Основные задачи системы сжатого воздуха таковы: выработка сжатого воздуха в необходимом количестве при высоком давлении; обеспечение стабильности поддержания давления и расхода при возможности их измерения и регулирования; исключение содержания в воздухе вредных посторонних включений, таких, как пыль, влага и пары масла; доставка сжатого воздуха от компрессора к пневмоинструменту. Термин «система» здесь использован не случайно, поскольку это совокупность ряда технических устройств и элементов. Ключевым элементом этой системы, безусловно, является компрессор. В прошлый раз мы выяснили, что его производительность и общий объем ресиверов должны позволять бесперебойно работать всему установленному на сервисе пневмоинструменту: чтобы при включении, например, шлифовальной машинки краскопульт не начинал «плеваться» краской из-за нехватки воздуха. Одним из немаловажных моментов, которые необходимо продумать сразу после покупки компрессора, является, как ни странно, место его установки. МЕСТО ДЛЯ УСТАНОВКИ КОМПРЕССОРА Конечно, если лишнего места нет и компрессору отводится «единственный свободный угол», то деваться некуда — туда его и ставим. Но если у вас есть желание и возможность установить компрессор правильно — установите его в отдельном помещении. Это помещение должно быть сухим и отапливаемым (большинство компрессоров выпускаются для эксплуатации в диапазоне температур от +5 до +40°C). По понятным причинам нельзя допускать воздействия на компрессор атмосферных осадков. Помещение должно хорошо проветриваться, всасываемый воздух не должен содержать паров токсичных веществ, взрывоопасных газов и растворителей.

По этой причине компрессор нельзя устанавливать непосредственно в зоне подготовки и покраски автомобиля.

Крайне важно обеспечить низкий уровень запыленности в помещении. Постарайтесь по возможности минимизировать количество различных «пылесборных» поверхностей – вся эта пыль в конечном итоге устремится в компрессор и далеко не вся будет задержана фильтром. Пример классической пылящей поверхности — бетонный пол. Такой пол следует хотя бы покрасить. Если обеспечить низкую запыленность в компрессорной невозможно, придется чаще обращать внимание на состояние воздушного фильтра. Засоренный фильтр не только снижает выходную производительность компрессора, но и приводит к поломкам клапанов. Место для установки компрессора должно быть горизонтальным и ровным. Для удобства технического обслуживания компрессор желательно установить на некотором расстоянии от стен (0,8 – 1 м). Компрессор — сердце пневмосистемы. В то же время, без воздушной магистрали (ее можно сравнить с артериями), он так и останется лишь частью общего «организма».

ПНЕВМОМАГИСТРАЛЬ С ЧЕГО НАЧАТЬ?

Первый совет тем, кто решил наладить хорошую пневмолинию — забудьте о всякого рода кустарщине типа водопроводных кранов в магистралях и самодельных фильтров-влагоотделителей. Только высококачественное дополнительное оборудование, запорная и регулирующая арматура смогут обеспечить долговечность работы инструмента и компрессора, и высокое качество работ (особенно малярных). А мелочная экономия в этом деле неминуемо выльется в дополнительные расходы. Проверено жизнью. По этим же причинам крайне нежелательна разводка из гибких шлангов (ввиду их низкой механической надежности и, как следствие, — утечек воздуха). Обычного гибкого шланга может быть достаточно только для бытовых условий, когда пневмоинструмент подключается редко, да и то, чтобы «продуть-накачать». А в условиях даже небольшого производства не обойтись без стационарно закрепленной магистрали, собранной из специально предназначенных для сжатого воздуха труб. А уже к трубопроводу, с помощью гибкого шланга (минимально возможной длины) можно подключать различный пневмоинструмент. Итак, трубопровод. Из каких материалов он должен быть изготовлен?

Читайте также:  Настройка реле давления холодильной установки

СТАЛЬ И ОЦИНКОВКА
Казалось бы, что плохого в том, что в качестве материала для трубопроводов используются стандартные стальные водопроводные трубы. Выгода очевидна: «черные» трубы (как и всевозможные вентили и уголки к ним) можно найти на любом строительном рынке, расходы на их покупку и монтаж минимальны. Однако не все так просто. Как мы знаем, главный враг пневмосетей — конденсат, вызывающий внутреннюю коррозию трубопроводов. А оксид железа, возникающий в результате коррозии — это сильнейший абразив, способный стереть в порошок что угодно, даже азотированный или насыщенный углеродом поверхностный слой металла механизмов привода пневмоинструмента. Именно поэтому пневматическая магистраль должна быть собрана из материалов, стойких к коррозии. Применяют, как правило, оцинковку, пластик или алюминий. Хотя, как показывает практика, к трубам из оцинковки тоже нужно относиться с осторожностью. Дело в том, что оцинковка может быть нанесена только с одной, наружной стороны. А если и нет, и трубы оцинкованы полностью, со временем в них все-равно будут появляться продукты коррозии. В условиях подачи сжатого воздуха стойкость гальванического цинкового покрытия не так уж и высока, пусть и выше, чем у обычной стали.

ПЛАСТИК
Главное преимущество пластика (используются различные его виды) — мобильность и легкость монтажа. Пневмолинию из пластиковых труб можно собрать буквально «на коленке», любые геометрические формы трубопроводам придаются за считанные минуты. Такой трубопровод легко нарастить или передвинуть (удобно для мобильных пневмолиний). К тому же пластиковые трубы не подвержены коррозии, их сопротивление потоку воздуха значительно ниже, чем у стали. Вместе с тем, пластик имеет низкую прочность и теплостойкость, со временем такие трубы сильно деформируются. Отсюда — утечки воздуха. Кроме того, велика вероятность их случайного повреждения. На практике бывали случаи неосторожного касания «болгаркой» или проведения сварочных работ вблизи трубы, со всеми вытекающими (и выдуваемыми) последствиями.

Пожалуй, лучший материал для пневмомагистралей на сегодняшний день — алюминиевая труба с полимерным покрытием. Такие не подвержены коррозии, герметичны, просты в монтаже и обслуживании. Алюминиевые трубы обладают наименьшим газодинамическим сопротивлением по сравнению с любыми другими материалами трубопроводов. Их внутренняя поверхность отшлифована до уровня зеркала, поэтому ничто не препятствует движению потока воздуха. Затраты на такие трубы с лихвой окупаются высоким качеством воздуха, долговечностью службы пневмоинструмента и фильтров, отсутствием утечек и, как следствие, сбережением электроэнергии. На самом деле это не самая дешёвая линия из тех что мы рассмотрели и не самый простой и быстрый монтаж, но зато самый лучший по пропускаемости воздуха их тех что мы рассмотрели исключая оцинковку или черные трубы но в разы выше их по коррозионной стойкости. Что может быть проще? Все прочие элементы пневмосети, такие как муфты, сгоны, тройники, запорная и регулировочная арматура также должны быть изготовлены из не подверженных коррозии материалов. Такие выпускаются ведущими производителями компрессорного оборудования.

С материалом труб определились. Следующий критично важный момент — выбор диаметра этих труб. Средняя пневматическая магистраль — система довольно протяженная, а мы помним, что с удалением от источника нагнетания сжатого воздуха происходит падение давления в линии. И чем меньше диаметр трубопроводов, тем большие потери давления будут наблюдаться. Например, при использовании десятиметрового шланга с внутренним диаметром 9 мм при давлении 6 бар, падение давления составит 1,7 бар (на входе в пистолет давление будет уже не 6, а 4,3 бар). А в случае использования шланга диаметром 6 мм падение составит целых 3,5 бар. То же самое касается и всех остальных «узких мест» пневмостистемы. Ведь иногда даже мощный компрессор и большие ресиверы не в состоянии обеспечить воздухом краскопульт из-за того, что где-то в местах соединения труб или на входе в пистолет стоит переходник с зауженным внутренним диаметром. Воздух просто не в силах пройти через него в нужном объеме. Есть универсальное правило, которым следует руководствоваться при выборе диаметра основного трубопровода: внутренний диаметр труб должен быть не меньше внутреннего диаметра выходного штуцера компрессора или ресивера . То есть, если на компрессоре стоит кран с внутренним диаметром в 1 дюйм (25 миллиметров), то и трубопроводы должны иметь внутренний диаметр минимум 1 дюйм. Распространенной ошибкой в связи с этим является неправильное понимание разницы между внешним и внутренним диаметром труб. Чаще всего такие ошибки допускаются при монтаже пластиковых труб: закупается труба того же внешнего диаметра, что и кран на компрессоре. Пластиковая труба, как и все трубы, маркируется исходя из своего внешнего диаметра, но здесь есть подвох: толщина стенки. Например, у трубы ПВХ она составляет 4 мм (а у армированной — еще больше). Следовательно, суммарная толщина стенок составит: 4 + 4 = 8 мм. А значит, ПВХ труба с маркировкой 25 мм будет иметь диаметр проходного сечения всего 17 мм. Правильнее подбирать диаметр труб следующим образом: на компрессоре стоит штуцер с внутренним диаметром в 1 дюйм (25 миллиметров), значит трубы также должны иметь проходной диаметр не меньше дюйма. Теперь берем суммарную толщину стенок трубы (в нашем случае с ПВХ трубой она составляет 8 мм) и прибавляем 25 миллиметров. Таким образом, нам необходима труба с наружным диаметром не менее 33 мм. Если вы уже эксплуатируете пневмолинию из пластика, интереса ради можете пройти к оборудованию и посмотреть, как у вас подобрана труба. В большинстве случаев внешний диаметр трубы окажется равным диаметру крана компрессора. А вот используя алюминиевую трубу вы избавляете себя от таких ошибок, пользуетесь основным правилом и сразу получаете то, что вам нужно.

Читайте также:  В чем особенности обработки металлов давлением

ТОЧНЫЙ РАСЧЕТ ДИАМЕТРА ТРУБОПРОВОДА

Точный расчет диаметра основного трубопровода — довольно сложная задача, которая сводится к вычислению скоростей и расходов воздуха на различных участках трубопровода, а также величин падения давления. В силу того, что воздух обладает высокой сжимаемостью, этот расчет намного сложнее, чем, например, расчет гидравлических систем. Как правило, он выполняется только в наиболее ответственных случаях, а на практике для расчета пневмосистемы чаще используются специальные номограммы или таблицы. Есть еще один, относительно простой способ расчета диаметра основного трубопровода. В основе этого расчета лежит метод эквивалентной длины трубы, показывающий, сколько метров необходимо дополнительно добавить к длине прямолинейного участка трубопровода при установке каждого «местного сопротивления» (фитинга, крана и т.д.). Расчет проводится так: по длине трубопровода и производительности компрессора из специальной таблицы выбирается первоначальный диаметр трубы. Далее подсчитывается количество всех фитингов и при помощи таблицы перевода высчитывается длина запаса, которую необходимо прибавить к длине основного трубопровода для компенсации потерь. На последнем этапе повторно, с использованием уже новой длины проверяем, подходит ли изначально выбранный диаметр. Если нет – увеличиваем. При этом важно помнить, что: за основу расчета параметров кольцевого трубопровода берется половина его номинальной длины; за основу расчета параметров тупикового трубопровода берется его полная номинальная длина.

Давайте попробуем рассчитать диаметр трубопровода для пневмосети с такими параметрами:

Производительность компрессора: 800 л/м;
1/2 длины кольцевого трубопровода: 100 м.

Из таблицы, приведенной ниже видим, что искомый диаметр равен 1 дюйму (25 мм). И этот диаметр и применяется в основном во всех небольших мастерских включая гараж.

Источник

Adblock
detector