Меню

Система поддержания пластового давления кнс

Документы

ПОДДЕРЖАНИЕ ПЛАСТОВОГО ДАВЛЕНИЯ И ПОВЫШЕНИЕ НЕФТЕОТДАЧИ ПЛАСТОВ

7.1. Методы воздействия на нефтяные пласты

С целью увеличения темпа отбора нефти из залежи и повышения ее нефтеотдачи проводят нагнетание рабочего агента в пласт для создания напорного режима, который имеет большую конечную нефтеотдачу по сравнению с режимами истощения.

В большинстве случаев (для месторождений РФ более 80 %) используется система поддержания пластового давления (ПДД) путем закачки воды.

Закачка газа, хотя и менее эффективна ввиду уменьшения коэффициентов охвата и нефтеотдачи, находит свое применение. Этому способствуют значительная газовая шапка, отсутствие напора контурных вод, наличие в коллекторе большого содержания набухающих глин.

В общем случае имеются следующие методы воздействия на нефтяные пласты: законтурное и внутриконтурное заводнения, нагнетание газа в повышенную часть залежи, вторичные методы добычи нефти, новые методы вытеснения нефти из залежи (повышение нефтеотдачи)

Законтурное заводнение — технологический процесс ППД, при котором воду нагнетают в пласты через нагнетательные скважины, расположенные за внешним контуром нефтеносности (рис. 7.1, а). Эксплуатационные скважины находятся внутри контура нефтеносности.

Приконтурное заводнение — процесс, при котором нагне-

Рис. 7.1. Схема заводнения месторождения:

I — нагнетательные скважины; II — контрольные скважины; III — эксплуатационные скважины

тательные скважины располагают в водонефтяной части пласта внутри внешнего контура нефтеносности. Это заводнение применяется вместо законтурного при плохой гидродинамической связи нефтеносной и водонасыщенной частей пласта. Возможно использование одновременно законтурного и прикон-турного заводнения при большой площади водоплавающей части залежи.

В указанных системах ППД заводнение действует на 2-3 ближайших ряда эксплуатационных скважин.

Для интенсификации добычи и увеличения охвата залежи воздействием применяется внутриконтурное заводнение (рис.

7.1, •), основой которого является разрезание залежи рядами нагнетательных скважин на несколько отдельных площадей. Крупные месторождения разрабатываются при комбинации законтурного и внутриконтурного заводнения. Вариантами по расположению скважин являются очаговое, внутриконтурное кольцевое (рис. 7.1, в), осевое (рис. 7.1, „) заводнения.

При определении количества воды для закачки необходимо исходить из количества отобранной из залежи жидкости. Для системы ППД необходимо закачивать воды не менее объема отбора жидкости, а с учетом негерметичности площади контура нефтеносности — с коэффициентом 1,1-1,5.

Давление нагнетания зависит от приемистости нагнетательных скважин и в основном поддерживается таким образом, чтобы пластовое давление на забое эксплуатационных скважин оставалось на уровне начального.

Технологическая схема процесса нагнетания газа в нефтяную залежь с целью увеличения нефтеотдачи в принципе аналогична схеме при заводнении залежи. Рабочий агент (газ, воздух) нагнетается через ряд инжекционных скважин и оттесняет остаточную нефть к окружающим эксплуатационным скважинам. Для наиболее равномерного воздействия на залежь следует применять правильные геометрические сетки размещения скважин — треугольные или квадратные. Отдельные поля инжекции могут быть составлены соответственно системами из семи или десяти скважин при расположении инжекционных скважин в центре этих систем. При этом общее соотношение инжекционных и эксплуатационных скважин составляет соответственно 1:2 и 1:3. Такие интенсивные системы на практике используются редко. Обычно применяют более умеренные соотношения от 1:4 до 1:10.

Разница в вязкостях нагнетаемого рабочего агента и нефти в пластовых условиях может быть весьма значительна. При этом возможны прорывы газа через нефтенасыщенные части залежи к эксплуатационным скважинам даже малой газонасыщенности породы. При большой мощности залежи наблюдается преимущественное движение газа по верхним частям залежи, а с учетом неоднородности строения залежи это ведет к прорывам газа и к обходному его движению без вытеснения нефти. При этом удельные расходы рабочего агента могут быть больше, чем при заводнении.

Для существующей сетки скважин вся площадь условно разбивается на ряд полей инжекции с учетом предполагаемого количества инжекционных скважин по соотношению между количествами инжекционных и эксплуатационных скважин. Это соотношение принимается в зависимости от расстояния между скважинами, проницаемости и степени однородности строения залежи. При большей проницаемости и более однородном строении принимается большее количество эксплуатационных скважин на одну инжекционную и наоборот.

Читайте также:  Электронный датчик давления конденсации

В центре каждого намеченного поля инжекции инжекцион-ные скважины следует располагать равномерно по площади. Выбор этих скважин следует рассматривать как ряд действующих скважин в пределах каждого поля инжекции. К этим скважинам предъявляются требования:

вскрытие скважиной только данного эксплуатационного объекта при надежной изоляции всех вышезалегающих пористых коллекторов;

герметичность крепления скважины (колонна, цементное кольцо);

отсутствие чрезмерной засоренности призабойной зоны скважины.

Из рассматриваемых скважин следует выбрать менее продуктивные. Малая продуктивность скважин возникает из-за малой проницаемости вскрытой части залежи, поэтому вытеснение остаточной нефти отсюда в соседние, более дренированные части залежи может протекать с большей эффективностью, чем в обратном направлении. При невозможности выбрать инжекционные скважины среди старых эксплуатационных следует бурить новые скважины специально в качестве инжекционных.

Нагнетание газа лучше производить через колонну НКТ малого диаметра (60-89 мм) с пакером близ кровли эксплуатационного объекта. Это уменьшает вероятность утечек рабочего агента и дает лучшую сохранность обсадных труб, особенно в старых скважинах.

Старые эксплуатационные скважины в процессе их подготовки должны быть тщательно промыты и очищены от возможной песчано-глинистой пробки, грязи, парафинистых осадков и пр. С этой же целью рекомендуется до максимума увеличить количество отверстий в забойном фильтре или торпедировать призабойную зону.

Нагнетание в залежь естественного газа компенсирует потери газовой энергии за предшествующий период эксплуатации залежи.

Целесообразно осуществление сбора всего добытого газа на поверхности, его отбензинивания и нагнетания в залежь сухого газа, который бы там вновь обогащался продуктами испарения пластовой нефти. Применение естественного газа в качестве рабочего агента часто вызывает трудности, связанные обычно с его недостаточным количеством на промыслах. В ряде случаев естественный газ можно заменить воздухом, который из-за низкой растворимости в нефти оказывает более эффективное выталкивающее действие на нее, чем сухой газ. Однако использование воздуха может привести к отрицательным последствиям:

1. Длительное соприкосновение нефти с воздухом вызывает окисление нефти, возрастание ее удельного веса и вязкости, а также приводит к образованию смол в пласте, которые закупоривают отдельные поровые каналы залежи.

2. Смешение воздуха с пластовым газом ведет к уменьшению его калорийности и ухудшению условий переработки газа.

3. Если из-за трудностей переработки газа (при сильном загрязнении его воздухом) газовую продукцию скважин выпускать в атмосферу, то вместе с воздухом будут теряться ценнейшие бензиновые фракции.

4. Улавливание газовой продукции для ее сжатия, отбензинивания и последующего нагнетания в залежь часто сопряжено с опасностью получения взрывчатых смесей. Так, при содержании в воздухе (при атмосферных условиях) от 5 до 15 % (по объему) метана образуется гремучая (взрывчатая) смесь, очень опасная в обращении. Изменение температуры меняет пределы взрывчатости смеси воздуха с углеводородами. По опытным данным при росте температуры нижний предел взрывчатости смеси понижается, а верхний повышается, т.е. пределы взрывчатости раздвигаются. Все это требует очень осторожного обращения со смесью воздух — газ и, главным образом, систематического наблюдения за составом отбираемой из скважины смеси.

5. Взаимодействие воздуха с пластовой водой приводит к выпадению некоторых солей (особенно железистых) в виде осадка в пласте.

6. Воздействие кислорода нагнетаемого воздуха на металлические части оборудования (особенно при наличии соленой воды и сероводорода) вызывает усиленную коррозию оборудования, а также приводит к преждевременному выводу его из строя и скоплению продуктов коррозии на забое.

7. Наличие воздуха в продукции эксплуатационных скважин способствует образованию более стойких эмульсий.

Указанные нежелательные последствия применения воздуха в качестве рабочего агента не всегда проявляют себя. В общем случае использование воздуха следует ограничивать только случаями, когда возможности применения другого рабочего агента, в частности естественного газа, совершенно исключены.

Читайте также:  Каким препаратом можно поднять сердечное давление

В качестве альтернативы предлагалось использовать выхлопные газы от двигателей внутреннего сгорания или промышленные дымовые газы в виде самостоятельного рабочего агента или в смеси с воздухом. Однако в случаях применения продуктов сгорания требуется сооружение специальных установок, что приводит к общему усложнению и удорожанию процесса. Подобные установки промышленного применения использовались на промыслах Западной Украины. Там же проверялись и совершенствовались установки по получению нового инертного рабочего агента — парогаза (смесь пара с продуктами горения), опытные испытания которого дали положительный эффект.

Поглотительная способность инжекционных скважин и давление нагнетания зависят от многих факторов и, прежде всего, от проницаемости призабойной зоны скважин. Однако в отличие от метода заводнения зависимость между этими параметрами для метода нагнетания газа пока не определена. Поэтому в каждом отдельном случае необходимы промысловые испытания в инжекционных скважинах с помощью передвижных компрессоров.

В практике применения метода отмечалась поглотительная способность скважин в разных условиях от 130 до 60 000 м 3 /сут на 0,1 МПа давления при изменении давления нагнетания от 0,1 до 10,8 МПа. При этом суточное нагнетание газа на одну скважину колебалось от 2,5 до 140 тыс. м 3 . Иногда считают достаточным нагнетание таких количеств газа, чтобы давление нагнетания превышало пластовое не более чем на 20-25 %. Другим расчетным показателем иногда считается нагнетание 100-150 м 3 газа в сутки на 1 м вскрытой толщины залежи. При нагнетании больших количеств газа возрастает вероятность его прорывов, а в рыхлых песках, кроме того, возникает опасность пробкообразования в эксплуатационных скважинах. Поэтому в начале процесса рекомендуется нагнетать минимальные количества газа с последующей его корректировкой.

Со временем, по мере дренирования залежи, расход рабочего агента на скважину обычно возрастает. Источник непроизводительной траты энергии можно обнаружить, если увеличение расхода рабочего агента наблюдается только в отдельных направлениях или плоскостях отдельных прослоев залежи. В этих случаях рабочий агент по трещинам и наиболее дренированным и сильно проницаемым прослойкам проходит к эксплуатационным скважинам без совершения полезной работы.

Часто прорыв газа обнаруживается в начальной пусковой стадии процесса, что вызывает резкое увеличение газового фактора, изменение состава газа и иногда рост давления в затрубном пространстве скважин. Если эти признаки проигнорировать, то прорыв газа быстро усиливается, и остановить его весьма затруднительно.

Поэтому в начале процесса необходимо тщательное наблюдение за работой всех инжекционных и эксплуатационных скважин. При первых же признаках проскальзывания газа следует принять надлежащие меры, к которым относятся:

регулировка отбора (и давления) в эксплуатационных скважинах, в направлении которых наметился прорыв, вплоть до временного закрытия этих скважин;

изоляция наиболее проницаемых зон в разрезе вскрытой в инжекционной скважине толщины залежи;

нагнетание вместе с газом жидкости (воды) с целью уменьшения эффективной проницаемости для газа наиболее проводящих зон за счет повышения их водонасыщенности;

сокращение объема нагнетаемого рабочего агента, вплоть до перевода инжекционных скважин в эксплуатационные и наоборот.

При большой толщине залежи (при различной проницаемости отдельных ее зон) во избежание преимущественного движения газа вдоль кровли рекомендуется расчленять разрез на отдельные зоны наибольшей мощности (от 5-6 до 12-15 м) для раздельного нагнетания газа в эти зоны.

Эффективность перечисленных мероприятий зависит от степени изученности эксплуатационного объекта и тщательности наблюдения за протеканием процесса. Кроме того, точность замеров, их регулярность и постоянный анализ документации способствуют своевременному устранению возникающих в процессе работ прорывов газа и правильной оценке эффективности процесса.

7.2. Способы и методы заводнения

Внутриконтурное заводнение проводят рядными или площадными системами. При рядных системах заводнения между двумя рядами нагнетательных скважин находятся 1-3-5 рядов эксплуатационных скважин. Для площадных систем используются квадратные и треугольные сетки разбуривания скважин.

Читайте также:  Как щука реагирует на понижение давления

На рис. 7.2 приведены элементы площадных систем заводнения при квадратной и треугольной сетках разбуривания. Площадные системы заводнения в условиях разработки неоднородных коллекторов обычно обеспечивают больший коэффициент нефтеотдачи, чем рядные системы.

Рис. 7.2. Элементы площадных систем заводнения при квадратной и треугольной

1 — добывающие скважины; 2 — нагнетательные скважины; а — расстояние

между эксплуатационной и нагнетательной скважинами

На поздней стадии эксплуатации методы поддержания пластового давления могут быть неэффективны из-за большого падения пластового давления. Тогда прибегают ко вторичным методам добычи нефти — закачки воды или газа по всей площади нефтеносности, которые называются соответственно площадное заводнение и площадная закачка газа.

Для равномерного и повсеместного воздействия на залежь нагнетательные скважины размещают между эксплуатационными. Схемы расположения этих скважин могут быть различными, но преобладает квадратная сетка размещения скважин. При этом одна нагнетательная скважина приходится на четыре эксплуатационные.

Для исключения прорыва воды или газа к отдельным скважинам ограничивают закачку воды в нужном месте, уменьшают отбор нефти из сильно обводняющихся скважин, проводят тампонирование отдельных интервалов пласта.

При большой обводненности залежи на конечном этапе эксплуатации скважин применяется форсированный отбор жидкости, при котором большие массы жидкости вымывают нефть из застойных зон. Форсированный отбор жидкости обеспечивается глубинными насосами большого диаметра, э ле-ктропогружными насосами и газлифтом.

На различных стадиях разработки может быть использовано заводнение с применением физико-химических средств повышения нефтеотдачи, т.е. с добавлением ПАВ, щелочи, мицеллярных растворов и т.д.

7.3. Оборудование для закачки воды и газа

Рост добычи нефти обеспечивается не только вводом в разработку новых месторождений, но и постоянным улучшением состояния эксплуатации разрабатываемых месторождений. Повышение нефтеотдачи пластов в основном ведется методом поддержания пластового давления закачкой воды. Для заводнения широко используются сточные и пластовые воды. Это позволяет решить проблему защиты водных ресурсов и окружающей среды.

В систему подготовки и закачки воды в нефтяные пласты входят водозаборные сооружения с насосной станцией первого подъема, водоочистные установки, насосные второго и третьего подъемов, насосные станции по закачке и нагнетательные скважины. В качестве насосных станций для закачки воды в нефтяные пласты для поддержания пластового давления применяют блочные кустовые насосные станции (БКНС) на базе центробежных насосных агрегатов ЦНС-180 и ЦНС-500. Поверхностные, сточные и пластовые воды нагнетают установками погружных центробежных электронасосов типа УЭЦН. Для оборудования устья нагнетательных скважин используют арматуры АИК1-65х210 и АНК-65х350 (рис. 7.3).

Конструкция насоса ЦНС-180 разработана на одной корпусной базе четырех модификаций с давлением нагнетания от

10,5 до 19,0 МПа (табл. 7.1).

Насос ЦНС-180 (рис. 7.4) — центробежный, горизонтальный, секционный, однокорпусный с односторонним расположением рабочих колес, с гидравлической пятой, подшипниками скольжения и концевыми — передним и задним — уплотнениями комбинированного типа.

Корпус насоса состоит из набора секций, входной и напорной крышек и концевых уплотнений.

Насос на плите фиксируют двумя цилиндрическими штифтами, устанавливаемыми в лапах входной крышки. Входной патрубок расположен горизонтально, напорный — вертикально.

Во избежание перетока воды по валу стыки рабочих колес

Рис. 7.3. Арматура нагнетательная:

1 — быстросборное соединение; 2 — разделитель иод манометр; 3 — трубная головка; 4 — задвижка; 5 — обратный клаиан

иритираются до илотного металлического контакта. Уилотне-ния рабочих колес щелевого тииа.

Для насосов ЦНС-180-1185, ЦНС-180-1422, ЦНС-180-1900 оиорами ротора служат иодшииники скольжения с иринуди-тельной смазкой, а для насоса ЦНС-180-1050 — иодшииники с кольцевой смазкой. Подшииники имеют стальные, залитые баббитом вкладыши с цилиндрической иосадкой в их кориусе. Насос с электродвигателем соединен с иомощью зубчатой муфты, обойма которой закрыта кожухом.

Для смазки и охлаждения иодшииников насосов и электродвигателей мощностью более 1000 кВт, а также зубчатой муфты каждый насосный агрегат комилектуется маслосистемой, в

Источник

Adblock
detector