Меню

Температурные интервалы горячей обработки давлением углеродистой стали

Температурный интервал горячей обработки металлов давлением

Для горячей обработки давлением металл нагревается до определенной температуры ( далее «температура» — «т-ра.» ) и деформируется до тех пор, пока т-ра его не опустится до такой, при которой дальнейшая деформация окажется невозможной . Таким образом, металл может быть деформирован в строго определенном температурном интервале. Максимальная т-ра его называется верхней границей , а минимальная — нижней . Каждый металл имеет свой строго определенный тр-ный интервал горячей обработки давлением.

Верхний предел т-рного интервала tв.п избирается так, чтобы не было пережигания, интенсивного окисления и обезуглероживания, а также перегрева. При выборе верхней границы т-рного интервала для высокоуглеродистых и легированных сталей необходимо иметь в виду их большую склонность к перегреву.

Температура нижней границы tн.п должна быть такая, чтобы после деформации при этой т-ре металл не получил укрепления (наклепа) и имел необходимую величину зерна. Особое значение выбор нижней границы имеет для легированных сталей и сплавов, не имеющих фазовых и аллотропических превращений, например для аустенитных и ферритных сталей. Конечные свойства этих сталей определяются в основном нижней границей температурного интервала (поскольку они не подвергаются термической обработке).

Практически верхний предел tв.п для углеродистых сталей расположен на 100-200° ниже линии солидуса АЕ (рис.1.12). Для доэвтектоидной углеродистых сталей оптимальной т-рой конца ковки является А3 + (25 — 50°).

Для низкоуглеродистых сталей (до 0,3% С) окончания обработки давлением в интервале температур А3 — А1 является вполне допустимым (рис. 1.12, штриховая линия) . При этом конечный размер зерен мельче, чем при окончании процесса выше А3 . Для заэвтектоидных стали обработка давлением заканчивается в интервале т-р Аст — А1 .

Рисунок 1.12. Часть диаграммы железо-цементит с температурным интервалом горячей обработки давлением.

При окончании обработки в этом интервале температур цементит, выделившийся ниже линии SE , имеет форму мелких раздробленных включений. Это улучшает служебные свойства заэвтектоидных стали, в частности повышаются режущие свойства инструмента. С повышением содержания углерода пластичность стали снижается. Поэтому при сравнительно низких температурах, близких к А1 обработку давлением высокоуглеродистых сталей можно заканчивать только в том случае, если схема напряженного состояния обеспечивает металл высокой пластичностью (например, штамповка в закрытых штампах и т. п.) .

Если схема всестороннего неравномерного сжатия выражена менее резко, как, например, при ковке на плоских бойках, то с увеличением содержания углерода в заэвтектоидных сталях нижняя граница т-рного интервала ковки должна быть несколько повышена (рис. 1.12, штриховая линия) . На рис. 1.12 температурный интервал нанесен в виде заштрихованной области. Из данного рисунка видно, что с повышением содержания углерода в стали температура границ снижается, а т-рный интервал сужается.

Источник

Температурный интервал обработки давлением

Нагрев металла при обработке давлением. Значение нагрева.

Тема 2.2. Физико-механические основы обработки металлов давлением. Нагрев металла

Вопросы:

1. Пластичность металлов и сопротивление деформиро­ванию. Влияние различных факторов на пластичность.

2. Физическая сущность пластической деформации. Влия­ние обработки давлением на структуру и свойства ме­талла.

5. Общая характеристика и принцип работы нагреватель­ных печей и электронагревательных устройств.

1.Пластичность – это способность металла изменять под действием внешних сил свою форму и размеры не разрушаясь, и сохранять полученную форму после прекращения действия силы.

Пластичность зависит от природы вещества (его химического состава и структурного строения), температуры, скорости деформации, степени наклепа и от условий напряженного состояния в момент деформации.

Влияние природных свойств металла. Пластичность находится в прямой зависимости от химического состава материала. С повышением содержания углерода в стали пластичность падает. Большое влияние оказывают элементы, входящие в состав сплава как примеси. Олово, сурьма, свинец, сера не растворяются в металле и, располагаясь по границам зерен, ослабляют связи между ними. Температура плавления этих элементов низкая, при нагреве под горячую деформацию они плавятся, что приводит к потере пластичности. Примеси замещения меньше снижают пластичность, чем примеси внедрения.

Пластичность зависит от структурного состояния металла, особенно при горячей деформации. Неоднородность микроструктуры снижает пластичность. Однофазные сплавы, при прочих равных условиях, всегда пластичнее, чем двухфазные. Фазы имеют неодинаковые механические свойства, и деформация получается неравномерной. Мелкозернистые металлы пластичнее крупнозернистых. Металл слитков менее пластичен, чем металл прокатанной или кованой заготовки, так как литая структура имеет резкую неоднородность зерен, включения и другие дефекты.

Читайте также:  Как уменьшить давление электробензонасоса

Влияние температуры. При очень низких температурах, близких к абсолютному нулю, все металлы хрупкие. Низкую пластичность необходимо учитывать при изготовлении конструкций, работающих при низких температурах.

С повышением температуры пластичность малоуглеродистых и среднеуглеродистых сталей повышается. Это объясняется тем, что происходит исправление нарушений границ зерен. Но повышение пластичности происходит не монотонно. В интервалах некоторых температур наблюдается «провал» пластичности. Так для чистого железа обнаруживается хрупкость при температуре 900…1000°С. Это объясняется фазовыми превращениями в металле. Снижение пластичности при температуре 300…400°С называется синеломкостью, при температуре 850…1000°С – красноломкостью.

Влияние наклепа и скорости деформации. Наклеп понижает пластичность металлов.

Влияние скорости деформации на пластичность двояко. При горячей обработке давлением повышение скорости ведет к снижении пластичности, т.к. наклеп опережает рекристаллизацию. При холодной обработке повышение скорости деформации чаще всего повышает пластичность из-за разогрева металла.

Влияние характера напряженного состояния. Характер напряженного состояния оказывает большое влияние на пластичность. Возрастание роли напряжений сжатия в общей схеме напряженного состояния увеличивает пластичность. В условиях резко выраженного всестороннего сжатия возможно деформировать даже очень хрупкие материалы. Схема всестороннего сжатия является наиболее благоприятной для проявления пластических свойств, так как при этом затрудняется межзеренная деформация и вся деформация протекает за счет внутризеренной. Возрастание роли напряжений растяжения приводит к снижению пластичности. В условиях всестороннего растяжения с малой разностью главных напряжений, когда касательные напряжения малы для начала пластической деформации, даже самые пластичные материалы хрупко разрушаются.

2.Обработка металлов давлением является процессом пластичес­кой деформации. Выше указывалось, что между атомами металлов действуют внутренние уравновешивающие силы. Если приложить к металлу внешнюю силу, то это равновесие нарушается и атомы смещаются относительно друг друга до тех пор, пока не будет до­стигнуто новое равновесие между атомными силами притяжения и отталкивания, с одной стороны, и внешней силой – с другой. Та­кой металл находится в напряженно-деформированном состоянии.

Пластической деформации металлов всегда предшествует упру­гая деформация. Она сохраняется до тех пор, пока действует внеш­няя сила. Если сдвиг атомов происходит в пределах параметра кристаллической решетки, то такую деформацию называют упру­гой. После снятия внешней силы искажение кристаллической ре­шетки исчезает и атомы возвращаются в исходное состояние. Если сдвиг атомов превышает параметр кристаллической решетки, то деформацию называют упруго – пластической. После снятия внешней силы искажение кристаллической решетки может исчезнуть (при со­ответствующей температуре), но атомы в исходное состояние не возвращаются.

В результате холодной деформации прочностные свойства металла и твердость с ростом степени деформации увеличиваются, а его пластические свойства уменьшаются.

Механические свойства после горячей обработки давлением литого металла значительно повышаются. Это повышение прочности и пластичности металла происходит главным образом за счет образования мелких зерен взамен дендритов литого металла, а также за счёт заварки усадочных пустот и рыхлости, образующихся в слитке в процессе кристаллизации жидкого металла.

3. Нагрев заготовок перед обработкой давлением произ­водится с целью повышения пластичности металла, в ре­зультате чего его сопротивление деформации значительно уменьшается (в 10…15 раз) по сравнению с обычным холодным состоянием. Следовательно, для деформации нагретых заготовок требуется прикладывать меньшие усилия, чем при деформации тех же заготовок в холод­ном состоянии, что позволяет снизить стоимость изготов­ляемых изделий. Нагрев должен обеспечить равномер­ную температуру по сечению заготовки, минимальное окисление и обезуглероживание стали.

Рассмотрим изменения механических свойств отожженной мягкой (0,3 % С) стали в зависимости от температуры ее нагрева. При на­греве выше 300 °С идет процесс разупрочнения стали, увеличивается пластичность и облегчается обработка давлением, следовательно, для такой обработки нагрев стали должен быть достаточно высоким, однако нельзя допускать пережога, который наблюдается при на­греве, близком к температурам линии солидуса.

Пережженный металл является неисправимым браком. Ниже зоны пережога лежит зона перегрева, выражающаяся резким ростом зерна аустенита, что приводит к образованию крупнозернистой структуры, определяющей пониженную пластичность при обработке давлением и пониженную прочность охлажденных Рис. 23

изделий. Пере­гретый металл также является браком, но его можно исправить отжигом или нормализацией.

Читайте также:  Прогноз атмосферного давления в амурской области

Заканчивать обработку давлением следует также при оптималь­ной температуре; продолжение обработки при более низкой темпе­ратуре приводит к неполной рекристаллизации и наклепу.

4. При обработке давлением металл нагревают для снижения сопротив­ления деформации, придания ему достаточной пластичности, умень­шения расхода энергии на обработку и увеличения обжатия.

Качество нагрева металла оказывает значительное влияние на производительность оборудования, размер зерен изделия, механи­ческие свойства, службу деформирующего инструмента, выход годного металла.

Для каждого металла установлен определенный интервал тем­ператур (начальная и конечная температуры), в котором его обра­ботка давлением осуществляется наилучшим образом, обеспечи­вая хорошую пластичность при минимальном сопротивлении дефор­мации.

При горячей обработке металлов давлением температура нагре­ва зависит от ряда факторов и, в первую очередь, от способа обра­ботки и свойств металла. Так, прокатку ведут при более высокой температуре, чем ковку и штамповку. Температурный интервал нагрева выбирают по диаграмме состояния сплава.

Начальную температуру обработки tнрекомендуется выбирать по формуле

где tпл– температура плавления сплава, определяемая по диаграм­ме состояния, ° С;

α – коэффициент понижения температуры, α= 0,85…0,95.

Коэффициент понижения температуры учитывает возможность предотвращения перегрева или пережога при температурах, близ­ких к температуре плавления. Чем выше температура плавления сплава и чем больше склонен сплав к перегреву и пережогу, тем ниже коэффициент α.

Если с понижением температуры не происходит фазовых пре­вращений (например, при полной растворимости металлов), то ко­нечную температуру деформации tкможно определять по формуле

При этой температуре и выше в большинстве случаев возможна деформация с полным разупрочнением металла. Ниже этой тем­пературы сопротивление металла деформации наиболее интенсивно повышается.

В случае, если обработка давлением с нагревом должна обес­печить получение определенных механических свойств, то темпера­туру и степень обжатия в конце обработки выбирают по диаграммам рекристаллизации (см. рис. 22). В этом Рис. 22

случае температура конца обработки будет ниже 0,7tпл.

При разработке технологического процесса обработки давле­нием температурный интервал деформации углеродистых сталей определяется по диаграмме состояния сплавов железо – углерод (рис.22, заштрихованная область). Следует отметить, что тем­пература обработки заэвтектоидных сталей находится ниже ли­нии ES (двухфазное состояние).

5. Оборудование, применяемое для нагрева заготовок перед обработкой давлением, подразделяется на нагревательные печи и электронагревательные устройства.

К нагревательным печам относят оборудование, в котором теплота к заготовке передается конвекцией и излучением из нагревательной каме­ры.

Нагревательные печи классифици­руют по следующим основным признакам: 1) источнику энергии – пламенные, в которых теплоту получают за счет химических реакций горения топлива, и электриче­ские печи; 2) назначению – кузнечные печи и печи про­катного производства; 3) принципу действия – камерные и методические.

Снизу рабочее пространство печи ограничено подом, на котором располагают нагреваемые заготовки, с боков – стенками печи, на которые опирается свод, замыкающий верхнюю часть ра­бочего пространства. В стенках печи имеются одно или два окна для загрузки холодных и выгрузки нагретых заго­товок. Отработанные печные газы отводятся из рабочего пространства в вытяжную трубу через специальные ка­налы – боров или дымоход. Пол, стены и свод печей выполняются из огнеупорных материалов. Необходимую температуру (до 1300 °С и более) в печах получают сжи­ганием газообразного или жидкого топлива либо с помощью электриче­ских нагревателей. По принципу действия печи подразделяются на ка­мерные и методические.

К камерным относят печи, имеющие одинаковую тем­пературу по всему рабочему про­странству. Загрузку и выгрузку заготовок производят по мере не­обходимости. Такие печи обычно имеют одно окно. Нагрев под ковку крупных слитков и заготовок для облегчения их загрузки и выгрузки производят в больших камерных печах с выдвижным подом (рис.23, б), с приводом от электродвигателя или гидроцилиндра. Камерные печи используют в ковочно-штамповочном производстве.

Методические печи, как правило, вытянутые в одном направлении, имеют загрузочное окно, в районе которого устанав­ливается относительно невысокая температура, удлиненную камеру печи, по длине которой темпера­тура повышается, вплоть до ко­нечной, вблизи у окна выгрузки (рис. 23, а). Нагреваемые заго­товки перемещаются с установ­ленной скоростью от загрузочно­го до окна выгрузки. В методиче­ских печах пламенного типа по­ток нагревающих газов направлен навстречу движению заготовок, что способствует их равномерному нагреву.

Читайте также:  Все о артериальном давлении и инфаркте миокарда

С целью экономии топлива газы, отходящие из печи, используют для подогрева горючих смесей до 500…900 °С. Это позволяет повысить эффек­тивность работы и экономить до 35% топлива.

Рис.23. Нагревательные печи:

а – методическая печь; 1 – толкатель; 2 – методическая зона; 3 – сварочная зо­на; 4 – торцовые горелки; 5 – роликовый конвейер; 6 – нижние горелки; 7 — ре­куператоры; б – камерная регенеративная печь с выдвижным подом: 1 – под; 2 – слиток; 3 – горелки или форсунки; 4 – каналы для подачи нагретого воздуха или отвода продуктов горения; 5 – песчаный затвор; 6 – шибер для регулирования по­дачи воздуха; 7 – регенератор; 8 – канал для отвода продуктов горения (дымоход); в – карусельная печь с вращающимся по­дом: 1 – под; 2 – цилиндрический выступ; 3 – зона для подогрева; 4 – дымоход; 5 – окно загрузки; 6 — пе­регородка; 7 – окно выдачи; 8 – зона высоких температур; 9 – горелки или форсунки

На рис.2, а показаны методические печи, в которых продвижение слитков и за­готовок осуществляется толкательным механизмом с ме­ханическим или пневматическим приводом, а также на­гревательные колодцы, представляющие собой разновид­ность камерных печей. Крышка колодца выполнена на уровне пола цеха, а слитки устанавливают в них в верти­кальном положении для лучшего обогрева. Методические печи применяют в прокатном производстве.

В ковочно-штамповочном производстве используют ка­мерные, методические и полуметодические печи. Иногда нагрев небольших заготовок из черных или цветных металлов с целью предохранения их от окисления выполняют в гер­метичном муфеле, изготовленном из жаропрочного мате­риала и устанавливаемом в камеру печи, которую назы­вают муфельной печью. В цехах горячей объемной штампов­ки применяют полу- методические печи, которые короче ме­тодических, и печи с вращающимся подом (рис.23, в), пред­ставляющие собой разновидность полуметодических печей.

Рис.24. Схемы электронагревательных установок:

а – для индукционного нагрева: 1 – генератор (преобразователь частоты тока); 2 – индуктор; 3 – нагреваемая заготовка; 4 – батарея конден­саторов; 5 – контактор для включения и выключения установки; б – для нагрева методом сопротивления: 1 – нагреваемая заготовка; 2 – контакты; 3 – вторичная обмотка понижающего трансформатора; 4 – первичная обмотка трансформатора; 5 – контактор для включения и выключения установки

В электронагревательных устройствах теплота выделяется непосредст­венно в самой заготовке в виде теплоты сопротивления при пропускании через нее большой силы тока (рис.24, б) либо при возбуждении в ней вих­ревых токов в специальных индукционных печах (рис.24, а).

При нагревании заготовки проходящим током основной частью является трансформатор, обеспечивающий необходимую силу тока. Первичная обмотка его обычно секционирована, что позволяет регулировать в необходимых преде­лах силу тока нагрева. Вторичная обмотка состоит чаще всего из одного, редко двух-трех витков. Такая конструкция обеспечивает напряжение на зажимах дета­лей 2…12 В и силу тока до 200…300 тыс. А. Сила тока выбирается исходя из рода материала, сечения нагреваемой заготовки и необходимой скорости нагрева. Установки для контактного нагрева сопротивлениемприменяют для нагрева длинных заготовок постоянного сечения диаметром 15…75 мм.

Основной частью установки для индукционного нагрева (рис.24, а), явля­ются генератор повышенной частоты (50…8000 Гц) и собственно индуктор, вы­полненный в виде многовитковой спирали из медной круглой или прямоуголь­ной трубы. В необходимых случаях индуктор охлаждается проточной водой, подаваемой по внутренней полости. Внутрь спирали помещается корпус камеры,выполненный из огнеупорного диэлектрического материала. Нагреваемые заго­товки помещаются в корпус и перемещаются в нем с помощью толкателя.

По индуктору, подключенному к генератору повышенной частоты, про­текает переменный ток, образующий поле индукции. Вследствие этого в за­готовках, находящихся в переменном магнитном поле, возникают вихревые токи, сосредоточенные, в основном, в поверхностных слоях заготовки. Тол­щина нагреваемого слоя зависит от частоты тока; чем она выше, тем более поверхностным и интенсивным будет нагрев. Поэтому для разогрева мас­сивных заготовок иногда применяют промышленную частоту (50 Гц). Глу­бина прогрева в этом случае может достигать 25…30% от толщины заготов­ки. Прогрев по всему сечению, т. е. центральной части заготовки, происходит за счет теплопроводности. За время прохождения заготовки от входа в индуктор до выхода должен быть обеспечен нагрев до необходимой температуры.

Тема 2.3.1 Понятие о прокатном производстве. Прокатка, её виды

Источник

Adblock
detector