Меню

В каких единицах измеряется барометрическое давление

Измерение атмосферного давления

Давление воздуха изменяется в широких пределах. Если оно больше 760 миллиметров ртутрного столба, то считается повышенным, если меньше – то пониженным.

Наблюдения за изменением атмосферного давления позволяют предсказывать погоду. Например, при повышении давления в зимний период погода становится морозней, а летом – жаркой. Пониженное атмосферное давление способствует появлению облачности, выпадению осадков. Поэтому постоянно знать величину атмосферного давления и контролировать его изменения необходимо не только ученым, медикам, но и всем нам.

Атмосферное давление

Атмосферное давление измеряется в миллиметрах ртутного столба, а также в Паскалях и гектоПаскалях. Принято считать нормальным давление, которое равно 760 мм рт. ст. (1013,25 гПа) .

Атмосферное давление, как правило, изменяется в зависимости от изменений погодных условий. Зачастую давление падает перед ненастной погодой, повышается – перед хорошей. Ведение учета изменения давления позволяет определить перемещение циклонов и направление ветров.

На самочувствие человека, проживающего долгое время в определенной местности, изменение характерного давления зачастую не влияет. В случаях, когда происходят непериодические колебания атмосферного давления, даже у здоровых людей появляется головная боль, падает работоспособность и ощущается тяжесть тела.

Изменение атмосферного давления также влияет на многие технологические процессы. Например, при переработке нефтепродуктов, где давление является одним из основных контролируемых технических параметров; хлебо-булочное производство, где показания давления сильно влияют на влажность полуфабрикатов из теста; в авиационной промышленности это очень важный параметр, оказывающий влияние на сроки и условия эксплуатации.

Приборы для измерения атмосферного давления

На сегодняшний день существует несколько видов барометров, с помощью которых осуществляют измерение давления воздуха:

  • Ртутный сифонный барометр – представляет У-образную, наполненную ртутью трубку с открытым и запаянным концом.
  • Ртутный чашечный барометр – состоит из вертикальной, наполненной ртутью трубки, верхний конец которой запаян, а нижний находится в специальной чашечке с ртутью.
  • Барометр-анероид – является безвоздушной металлической коробкой с волнообразными стенками.
  • Барограф – самопищущий прибор, который применяют для наблюдения за барометрическим давлением в определенные промежутки времени.
  • Электронный барометр – цифровой прибор, работающий по принципу обычного анероида или по принципу измерения давления воздуха на чувствительный кристалл.

Ртутные барометры являются более точными и надежными по сравнению с анероидами, по ним проверяют работу других видов барометров. Высота давления в них определяется по высоте столба ртути. Метеорологические станции оборудованы чашечными барометрами.

Измерение атмосферного давления с помощью термогигрометра

Атмосферное давление измеряется не только с помощью различных видов барометров, но и такими универсальными цифровыми приборами, как термогигрометры. Несмотря на то, что основная задача данных устройств – определение относительной влажности и температуры, они прекрасно справляются и с измерением давления воздуха, показывая максимально точные величины. Поэтому такие многофункциональные приборы приобрести намного выгоднее, чем устаревшие барометры и психрометры.

АО «ЭКСИС» предлагает Вашему вниманию огромный ассортимент электронных измерителей давления и других контрольно-измерительных приборов высокого качества и всегда по доступным ценам.

В частности, в нашей копании Вы сможете приобрести следующие модели термогигрометров:

  • Термогигрометр ИВТМ-7 М 2-Д-В. Прибор, помимо измерения и регистрации температуры и относительной влажности воздуха и других неагрессивных газов, измеряет атмосферное давление в миллиметрах ртутного столба и гПа, может регистрировать данные в энергонезависимой памяти, пересчитывать результаты измерений в различные единицы (процент относительной влажности, г/м3), осуществлять одновременную индикацию измеряемых значений. ИВТМ-7 М 2-Д-В обладает высокой степенью пылевлагозащиты (IP65), благодаря чему возможно его использование в помещениях с повышенной влажностью.
  • Термогигрометр ИВТМ-7 К-1. Прибор измеряет атмосферное давление в кПа, может пересчитывать значения различных единиц влажности, осуществлять одновременную индикацию измеряемых значений, регистрировать данные на microSD, возможно подключение различных типов первичных преобразователей.
  • Термогигрометр ИВТМ-7 Р-03-И-Д. Прибор оснащен жидкокристаллическим индикатором, предназначенным для визуального контроля значений относительной влажности, температуры и давления. Имеет малые габариты и эргономичный корпус.
  • Термогигрометр ИВТМ-7 М 6-Д (в эргономичном корпусе). Прибор измеряет атмосферное давление в кПа, может регистрировать данные на энергонезависимой карте памяти, пересчитывать результаты измерений в различные единицы, осуществлять одновременную индикацию измеряемых значений. Имеет эргономичный корпус, большой и удобный дисплей.
  • Термогигрометр ИВТМ-7 М 3-Д-В. Прибор, помимо измерения и регистрации температуры и относительной влажности воздуха и других неагрессивных газов, измеряет атмосферное давление в миллиметрах ртутного столба и гПа, может регистрировать данные в энергонезависимой памяти, пересчитывать результаты измерений в различные единицы (процент относительной влажности, г/м3), осуществлять одновременную индикацию измеряемых значений. Модель ИВТМ-7 М3-Д-В предназначена для создания измерительной сети. Степень влагозащиты корпуса и датчика IP65, благодаря чему возможно его использование в помещениях с повышенной влажностью.
  • Термогигрометр ИВТМ-7 М 6-Д. Прибор измеряет атмосферное давление в кПа, может регистрировать данные на энергонезависимой карте памяти (microSD), пересчитывать результаты измерений в различные единицы, осуществлять одновременную индикацию измеряемых значений.
Читайте также:  Давление насыщенного пара физическая химия

Все модели термогигрометров имеют интерфейс связи с ПК посредством USB, RS-232 и могут крепиться к стене.

Источник

Почему прибор для измерения давления называется барометр? В каких единицах он проградуирован?

Вопрос 1: Почему прибор для измерения давления называется барометр? В каких единицах он проградуирован?

Барометр (греч. baros — тяжесть, давление и metreo — измеряю) — прибор для измерения атмосферного давления.

Первым атмосферное давление измерил итальянский ученый Эванджелиста Торричелли в 1643 году. Развивая учения Галилея, Торричелли после долгих опытов, доказал, что воздух имеет вес, и давление атмосферы уравновешивается столбом воды в 32 фута, или 10,3м. Он пошел в своих исследованиях ещё дальше и позже изобрел прибор для измерения атмосферного давления — барометр.

Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и на земную поверхность. В каждой точке атмосферы атмосферное давление равно весу вышележащего столба воздуха с основанием, равным единице площади.

В соответствии с международной системой единиц (система СИ) основной единицей для измерения атмосферного давления является гектопаскаль (гПа), однако, в обслуживании ряда организаций разрешается применять старые единицы: миллибар (мб) и миллиметр ртутного столба (мм рт. ст.). Миллиметр ртутного столба (мм рт. ст., mm Hg) — внесистемная единица измерения давления, равная / 760 ≈ 133,Па; иногда называется „торр“ (русское обозначение — торр, международное — Torr) в честь Э. Торричелли.

Происхождение этой единицы связано со способом измерения атмосферного давления при помощи барометра, в котором давление уравновешивается столбиком жидкости. В качестве жидкости часто используется ртуть, поскольку у неё очень высокая плотность (≈13 600 кг/м³) и низкое давление насыщенного пара при комнатной температуре.

Атмосферное давление на уровне моря составляет примерно 760 мм рт. ст. Стандартное атмосферное давление принято равным (точно) 760 мм рт. ст., или Па, отсюда вытекает определение миллиметра ртутного столба (/760 Па). Ранее использовалось несколько иное определение: давление столба ртути высотой 1 мм и плотностью 13,5951×103 кг/м³ при ускорении свободного падения 9,м/с². Разница между этими двумя определениями составляет 0,%.

Миллиметры ртутного столба используются, например, в вакуумной технике, в метеорологических сводках и при измерении кровяного давления. Само собой, никто не использует прибор Торричелли для измерения таких низких давлений. Для измерения низких давлений используют другие приборы, например, вакуумметр.

Иногда используются миллиметры водяного столба (1 мм рт. ст. = 13,5951 мм вод. ст.). В США и Канаде также, используется единица измерения „дюйм ртутного столба“ (обозначение — inHg). 1 inHg = 3,386389 кПа при 0 °C.

Читайте также:  Можно ли забеременеть при высоком давлении

Вопрос 2: Какая физическая величина измерялась в «термиях»? Какой единицей заменили «термию» сейчас?

Термия (от греч. therme — тепло) — устаревшая, вышедшая из употребления единица количества теплоты, равная количеству теплоты, необходимому для нагревания 1 т воды от 14,5 до 15,5 °С.

До конца 18 века теплоту считали материальной субстанцией, полагая, что температура тела определяется количеством содержащейся в нем «калорической жидкости», или «теплорода». Румфорд, Дж. Джоуль и другие физики того времени путем остроумных опытов и рассуждений опровергли «калорическую» теорию, доказав, что теплота невесома и ее можно получать в любых количествах просто за счет механического движения. Теплота сама по себе не является веществом — это всего лишь энергия движения его атомов или молекул. Именно такого понимания теплоты придерживается современная физика. Теплота представляет собой одну из форм энергии, а поэтому должна измеряться в единицах энергии. В международной системе (СИ — Системе Интернациональной) единицей энергии является джоуль (Дж). 1 Т. = 4,1855*106 Дж = 4,1855 МДж.

Допускается также применение внесистемных единиц количества теплоты — калорий: международная калория равна 4,1868 Дж, термохимическая калория — 4,1840 Дж. В зарубежных лабораториях результаты исследований часто выражают с помощью так называемой 15-градусной калории, равной 4,1855 Дж.


Вопрос 3: Какой из манометров чувствительнее: ртутный или водяной? Почему?

Манометр — (от греч. manos — редкий, неплотный и metreo — измеряю), манометры нужны для измерения давления жидкостей, газов и паров. Есть несколько видов манометров: для определения абсолютного давления, отсчитываемого от нуля (полного вакуума); избыточного давления, т. е. превышения давления над атмосферным; разности двух давлений, различных от атмосферного (дифференциальные манометры, или дифманометры).

Мы знаем, что давление жидкости на дно сосуда прямо пропорционально высоте столба и плотности жидкости. При равенстве давлений высота столба жидкости с большей плотностью будет меньше высоты жидкости с меньшей плотностью. Плотность ртути больше плотности воды почти в 13,6 раз. Следовательно, на разницу давлений в 1 мм рт. ст. приходится 13,6 мм водяного столба. Именно поэтому водяной манометр более чувствительный. Поэтому низкое давление измеряется водяными манометрами, среднее — ртутными манометрами, а от 1 атмосферы и высокое — пружинными манометрами.


Вопрос 4: В ожидании прибытия царского поезда градоначальник приказал украсить платформу и натереть рельсы салом, чтобы они блестели. Как, по-вашему, не перестарался ли он?

Сало — это жир, жир – это смазка, смазка – это скольжение, скольжение – это остановка поезда совершенно не там, где планировалось, а гораздо дальше.

Тормоза и тормозное оборудование служат для уменьшения скорости движения поезда или его остановки. В поездах 19 века оно было только фрикционное с пневматическим приводом, то есть основанное на действии силы трения между тормозными колодками и вращающимися колесами. Существенным фактором эффективности торможения поезда является также сцепление между колесами и рельсами: плохое сцепление, что часто имеет место, например, в сезон листопада, может привести к возникновению проскальзывания и проезду запрещающего сигнала. При натирании рельсов салом произошло уменьшение сцепления колес и рельсов, и поезд не смог затормозить в нужном месте. Хорошо, если участок, который натерли, был намного короче поезда, тогда поезд тормозил бы колесами, которые еще не «засалились». Средством повышения коэффициента сцепления, которое было известно еще машинистам паровозов, является посыпка рельсов песком. Так что, надеемся, что царский поезд не сильно далеко уехал от перрона, но градоначальнику и его подчиненным явно досталось по полной программе за незнание законов физики!

Читайте также:  Головная боль при глазном давлении у ребенке

Мы не нашли информации происходила ли история, описанная в вопросе, в действительности. Но обнаружили много статей о том, как подобным способом партизаны боролись с фашистами: «Знаешь, как мой дедушка в партизанском отряде поезда немецкие под откос пускал, когда у него взрывчатки не было? Скручивали по рельсу с каждой стороны и клали их рядом, параллельно путям, сантиметрах в десяти от полотна, сразу и не заметишь. А рельсы за километр от этого разрыва мазали обычным салом. Машинист если и замечал разрыв, затормозить уже не мог, паровоз кувыркался под откос и тащил за собой все вагоны».

Также нас крайне поразило, насколько же много в Интернете содержится сообщений о том, как кто-то в детстве из простого озорства мазал рельсы салом и тем самым нарушал движение составов.

В настоящее время на поездах применяют самые различные типы тормозов: пневматические и электрические, автоматические и неавтоматические, грузовые и пассажирские, нежёсткие и полужёсткие и т. д. При экстренной остановке поезда приводятся в действие электродинамический, пневматический и рельсовый электромагнитный тормоза с одновременной посыпкой песка на рельсы и опусканием подвагонной сети. Но и в наше время происходят аварии с поездами из-за скользких рельсов.

Вопрос 5: Когда трогается длинный железнодорожный состав, локомотив сначала дает задний ход. Зачем это делается?

Поезд — в современном понятии, это сформированный и сцепленный состав, состоящий из нескольких вагонов, с одним или несколькими действующими локомотивами или моторными вагонами, приводящими его в движение, и имеющий установленные сигналы (звуковые и видимые), которые обозначают его голову и хвост.

Любые вагоны независимо от их назначения и конструкции имеют следующие общие элементы:

· ходовую часть, воспринимающую нагрузку от вагона и обеспечивающую его безопасное и плавное движение;

· раму, воспринимающую нагрузку от кузова вместе с грузом и передающую на ходовую часть вертикальное и горизонтальное усилия, действующие на вагон;

· кузов, предназначенный для размещения в нем пассажиров или грузов;

· тормоза и тормозное оборудование, обеспечивающие умень­шение скорости движения или остановку поезда;

· ударно-тяговые приборы, служащие для сцепления вагонов друг с другом и с локомотивом и ослабления растягивающих и сжимающих усилий, передаваемых от локомотива и от одного вагона другому.

Если машинист локомотива попытается сразу резко начать движение поезда вперед, когда сцепки вагонов натянуты, то может оказаться, что он не сдвинется с места, так как суммарная сила трения покоя, действующая со стороны рельсов на все колеса состава, превысит силу скольжения ведущих колес локомотива, создаваемую осями и имеющую противоположное направление. Поэтому вначале необходимо подать поезд назад, ослабив тем самым натяжение сцепок, и только после этого приводить в движение вагоны последовательно, один за другим, а затем, так же поочередно, начинать их движение вперед.

Использованные материалы и литература:

1. Интернет-сайт http:// www. /ref/pryjinn6mi_manometrami. htm

2. Интернет-сайт http:// dic. /dic. nsf/enc_chemistry

3. Интернет-сайт http:// www. /chto-takoe-bumaga. html

4. Интернет-сайт http:// www. /journal/entsiklopediya-potrebitelya-art-chem-otlichaetsya-vidyi-shkol-nyih-prinadlezhnostey. html

5. Интернет-сайт http://ru. wikipedia. org

6. Интернет-сайт http:// www. /quiz/91

7. Интернет-сайт http:// rwlib. /e_book_vagony_7.htm

8. Интернет-сайт http:// /books/item/f00/s00/z0000040/st008.shtml

9. Интернет-сайт http:// www. /referats/r_1_kak_ustroeni_tormoza. html

10. Интернет-сайт http:// www. /zdm/05-2003/02151-2.htm

11. Интернет-сайт http:// bse. /article110073.html

12. Перышкин . 7 кл.: учеб. для общеобразоват. учреждений. – М.: Дрофа, 2008

13. Энциклопедия для детей. Том 16.Физика. – М.: Аванта+, 2003.

14. Иллюстрации: «Натюрморд с барометром» Полина Балашова, открытка 19 века «После купанья», «Эванжелиста Торичелли» гравюра, «Поезд на Царскосельской железной дороге» Тюмлинг, «Поезд в пути» И. Левитан.

Источник

Adblock
detector