Меню

В какой трубе давление больше в маленькой или большой

Закон Бернулли. Просто и доходчиво

Очень многое из окружающего нас мира подчиняется законам физики. Этому не стоит удивляться, ведь термин «физика» происходит от греческого слова, в переводе означающего «природа». И одним из таких законов, постоянно работающих вокруг нас, является закон Бернулли.

Сам по себе закон выступает как следствие принципа сохранения энергии. Такая его трактовка позволяет придать новое понимание многим ранее хорошо известным явлениям. Для понимания сути закона просто достаточно вспомнить протекающий ручеек. Вот он течет, бежит между камней, веток и корней. В каких-то местах делается шире, где-то уже. Можно заметить, что там, где ручеек шире, вода течет медленнее, где уже, вода течет быстрее. Вот это и есть принцип Бернулли, который устанавливает зависимость между давлением в потоке жидкости и скоростью движения такого потока.

Правда, учебники физики его формулируют несколько по-другому, и имеет он отношение к гидродинамике, а не к протекающему ручью. В достаточно популярном виде закон Бернулли можно изложить в таком варианте – давление жидкости, протекающей в трубе, выше там, где скорость ее движения меньше, и наоборот: там, где скорость больше, давление меньше.

Для подтверждения достаточно провести простейший опыт. Надо взять лист бумаги и подуть вдоль него. Бумага поднимется вверх, в ту сторону, вдоль которой проходит поток воздуха.

Все очень просто. Как говорит закон Бернулли, там, где скорость выше, давление меньше. Значит, вдоль поверхности листа, где проходит поток воздуха, давление меньше, а снизу листа, где потока воздуха нет, давление больше. Вот лист и поднимается в ту сторону, где давление меньше, т.е. туда, где проходит поток воздуха.

Описанный эффект находит широкое применение в быту и в технике. Как пример можно рассмотреть краскопульт или аэрограф. В них используются две трубки, одна большего сечения, другая меньшего. Та, которая большего диаметра, присоединена к емкости с краской, по той, что меньшего сечения, проходит с большой скоростью воздух. Благодаря возникающей разности давлений краска попадает в поток воздуха и переносится этим потоком на поверхность, которая должна быть окрашена.

По этому же принципу может работать и насос. Фактически то, что описано выше, и есть насос.

Не менее интересно выглядит закон Бернулли в применении для осушения болот. Как всегда, все очень просто. Заболоченная местность соединяется канавами с рекой. Течение в реке есть, в болоте нет. Опять возникает разность давлений, и река начинает высасывать воду из заболоченной местности. Происходит в чистом виде демонстрация работы закона физики.

Воздействие этого эффекта может носить и разрушительный характер. Например, если два корабля пройдут близко друг от друга, то скорость движения воды между ними будет выше, чем с другой стороны. В результате возникнет дополнительная сила, которая притянет корабли друг к другу, и катастрофа будет неизбежна.

Можно все сказанное изложить в виде формул, но уравнения Бернулли писать совсем не обязательно для понимания физической сути этого явления.

Для лучшего понимания приведем еще один пример использования описываемого закона. Все представляют себе ракету. В специальной камере происходит сгорание топлива, и образуется реактивная струя. Для ее ускорения используется специально суженный участок – сопло. Здесь происходит ускорение струи газов и вследствие этого — рост реактивной тяги.

Существует еще множество различных вариантов использования закона Бернулли в технике, но все их рассмотреть в рамках настоящей статьи просто невозможно.

Итак, сформулирован закон Бернулли, дано объяснение физической сущности происходящих процессов, на примерах из природы и техники показаны возможные варианты применения этого закона.

Источник

В какой трубе давление больше в маленькой или большой

В этом параграфе мы применим закон сохранения энергии к движению жидкости или газа по трубам. Движение жидкости по трубам часто встречается в технике и быту. По трубам водопровода подается вода в городе в дома, к местам ее потребления. В машинах по трубам поступает масло для смазки, топливо в двигатели и т. д. Движение жидкости по трубам нередко встречается и в природе. Достаточно сказать, что кровообращение животных и человека — это течение крови по трубкам — кровеносным сосудам. В какой-то мере течение воды в реках тоже является разновидностью течения жидкости по трубам. Русло реки — это своеобразная труба для текущей воды.

Читайте также:  Акт проверки предохранительного клапана сосуда работающего под давлением

Как известно, неподвижная жидкость в сосуде согласно закону Паскаля передает внешнее давление по всем направлениям и во все точки объема без изменения. Однако, когда жидкость течет без трения по трубе, площадь поперечного сечения которой на разных участках различна, давление оказывается неодинаковым вдоль трубы. Выясним, почему давление в движущейся жидкости зависит от площади поперечного сечения трубы. Но сначала ознакомимся с одной важной особенностью всякого потока жидкости.

Предположим, что жидкость течет по горизонтально расположенной трубе, сечение которой в разных местах различное, например по трубе, часть которой показана на рисунке 207.

Если бы мы мысленно провели несколько сечений вдоль трубы, площади которых соответственно равны и измерили бы количество жидкости, протекающей через каждое из них за какой-то промежуток времени то мы обнаружили бы, что через каждое сечение протекло одно и то же количество жидкости. Это значит, что вся та жидкость, которая за время проходит через первое сечение, за такое же время проходит и через третье сечение, хотя оно по площади значительно меньше, чем первое. Если бы это было не так и через сечение площадью за время проходило, например, меньше жидкости, чем через сечение площадью то избыток жидкости должен был бы где-то накапливаться. Но жидкость заполняет всю трубу, и накапливаться ей негде.

Как же может жидкость, протекшая через широкое сечение, успеть за такое же время «протиснуться» через узкое? Очевидно, что для этого при прохождении узких частей трубы скорость движения должна быть больше, и как раз во столько раз, во сколько раз площадь сечения меньше.

Действительно, рассмотрим некоторое сечение движущегося столба жидкости, совпадающее в начальный момент времени с одним из сечений трубы (рис. 208). За время эта площадка переместится на расстояние которое равно где — скорость течения жидкости. Объем V жидкости, протекшей через сечение трубы, равен произведению площади этого сечения на длину

В единицу же времени протекает объем жидкости —

Объем жидкости, протекающей в единицу времени через сечение трубы, равен произведению площади поперечного сечения трубы на скорость течения.

Как мы только что видели, этот объем должен быть одним и тем же в разных сечениях трубы. Поэтому, чем меньше сечение трубы, тем больше скорость движения.

Сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое

же время через любое другое сечение.

При этом мы считаем, что данная масса жидкости всегда имеет один и тот же объем, что она не может сжаться и уменьшить свой объем (о жидкости говорят, что она несжимаема). Хорошо известно, например, что в узких местах реки скорость течения воды больше, чем в широких. Если обозначить скорость течения жидкости в сечениях площадями через то можно написать:

Отсюда видно, что при переходе жидкости с участка трубы с большей площадью сечения на участок с меньшей площадью сечения скорость течения увеличивается, т. е. жидкость движется с ускорением. А это по второму закону Ньютона означает, что на жидкость действует сила. Что это за сила?

Этой силой может быть только разность между силами давления в широком и узком участках трубы. Таким образом, в широком участке давление жидкости должно быть больше, чем в узком участке трубы.

Это же следует из закона сохранения энергии. Действительно, если в узких местах трубы увеличивается скорость движения жидкости, то увеличивается и ее кинетическая энергия. А так как мы приняли, что жидкость течет без трения, то этот прирост кинетической энергии должен компенсироваться уменьшением потенциальной энергии, потому что полная энергия должна оставаться постоянной. О какой же потенциальной энергии здесь идет речь? Если труба горизонтальна, то потенциальная энергия взаимодействия с Землей во всех частях трубы одна и та же и не может измениться. Значит, остается только потенциальная энергия упругого взаимодействия. Сила давления, которая заставляет жидкость течь по трубе, — это и есть упругая сила сжатия жидкости. Когда мы говорим, что жидкость несжимаема, то имеем лишь в виду, что она не может быть сжата настолько, чтобы заметно изменился ее объем, но очень малое сжатие, вызывающее появление упругих сил, неизбежно происходит. Эти силы и создают давление жидкости. Вот это сжатие жидкости и уменьшается в узких частях трубы, компенсируя рост скорости. В узких местах труб давление жидкости должно быть поэтому меньше, чем в широких.

Читайте также:  Погружные насосы поддерживающие давление

В этом состоит закон, открытый петербургским академиком Даниилом Бернулли:

Давление текущей жидкости больше в тех сечениях потока, в которых скорость ее движения меньше, и,

наоборот, в тех сечениях, в которых скорость больше, давление меньше.

Как это ни покажется странным, но когда жидкость «протискивается» через узкие участки трубы, то ее сжатие не увеличивается, а уменьшается. И опыт хорошо это подтверждает.

Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками — манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы. В узких местах трубы высота столба жидкости в манометрической трубке меньше, чем в широких. Это означает, что в этих местах давление меньше. Чем меньше сечение трубы, тем больше в ней скорость течения и меньше давление. Можно, очевидно, подобрать такое сечение, в котором давление равно внешнему атмосферному давлению (высота уровня жидкости в манометре будет тогда равна нулю). А если взять еще меньшее сечение, то давление жидкости в нем будет меньше атмосферного.

Такой поток жидкости можно использовать для откачки воздуха. На этом принципе действует так называемый водоструйный насос. На рисунке 210 изображена схема такого насоса. Струю воды пропускают через трубку А с узким отверстием на конце. Давление воды у отверстия трубы меньше атмосферного. Поэтому

газ из откачиваемого объема через трубку В втягивается к концу трубки А и удаляется вместе с водой.

Все сказанное о движении жидкости по трубам относится и к движению газа. Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков. В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях, и может стать меньше атмосферного. В некоторых случаях для этого даже не требуется трубы.

Можно проделать простой опыт. Если дуть на лист бумаги вдоль его поверхности, как показано на рисунке 211, можно увидеть, что бумага станет подниматься вверх. Это происходит из-за понижения давления в струе воздуха над бумагой.

Такое же явление имеет место при полете самолета. Встречный поток воздуха набегает на выпуклую верхнюю поверхность крыла летящего самолета, и за счет этого происходит понижение давления. Давление над крылом оказывается меньше, чем давление под крылом. Именно поэтому возникает подъемная сила крыла.

1. Допустимая скорость течения нефти по трубам равна 2 м/сек. Какой объем нефти проходит через трубу диаметром 1 м в течение 1 ч?

2. Измерьте количество воды, вытекающей из водопроводного крана за определенное время Определите скорость течения воды, измерив диаметр трубы перед краном.

3. Каким должен быть диаметр трубопровода, по которому должно протекать воды в час? Допустимая скорость течения воды 2,5 м/сек.

Источник

§ 182. Закон Бернулли

Как мы упоминали, в трубах не очень длинных и достаточно широких трение настолько невелико, что им можно пренебречь. При этих условиях падение давления так мало, что в трубе постоянного сечения жидкость в манометрических трубках находится практически на одной высоте. Однако, если труба имеет в разных местах неодинаковое сечение, то даже в тех случаях, когда трением можно пренебречь, опыт обнаруживает, что статическое давление в разных местах различно.

Читайте также:  Какие глазные капли лучше при глазном давлении

Возьмем трубу неодинакового сечения (рис. 311) и будем пропускать через нее постоянный поток воды. По уровням в манометрических трубках мы увидим, что в суженных местах трубы статическое давление меньше, чем в широких. Значит, при переходе из широкой части трубы в более узкую степень сжатия жидкости уменьшается (давление уменьшается), а при переходе из более узкой части в широкую — увеличивается (давление увеличивается).

Рис. 311. В узких частях трубы статическое давление текущей жидкости меньше, чем в широких

Это объясняется тем, что в широких частях трубы жидкость должна течь медленнее, чем в узких, так как количество жидкости, протекающей за одинаковые промежутки времени, одинаково для всех сечений трубы. Поэтому при переходе из узкой части трубы в широкую скорость жидкости уменьшается: жидкость тормозится, как бы натекая на препятствие, и степень сжатия ее (а также ее давление) растет. Наоборот, при переходе из широкой части трубы в узкую скорость жидкости увеличивается и сжатие ее уменьшается: жидкость, ускоряясь, ведет себя подобно распрямляющейся пружине.

Итак, мы видим, что давление жидкости, текущей по трубе, больше там, где скорость движения жидкости меньше, и обратно: давление меньше там, где скорость движения жидкости больше. Эту зависимость между скоростью жидкости и ее давлением называют законом Бернулли по имени швейцарского физика и математика Даниила Бернулли (1700—1782).

Закон Бернулли имеет место и для жидкостей и для газов. Он остается в силе и для движения жидкости, не ограниченного стенками трубы, — в свободном потоке жидкости. В этом случае закон Бернулли нужно применять следующим образом.

Допустим, что движение жидкости или газа не изменяется с течением времени (установившееся течение). Тогда мы можем представить себе внутри потока линии, вдоль которых происходит движение жидкости. Эти линии называются линиями тока; они разбивают жидкость на отдельные струи, которые текут рядом, не смешиваясь. Линии тока можно сделать видимыми, вводя в поток воды жидкую краску через тонкие трубочки. Струйки краски располагаются вдоль линий тока. В воздухе для получения видимых линий тока можно воспользоваться струйками дыма. Можно показать, что закон Бернулли применим для каждой струи в отдельности: давление больше в тех местах струи, где скорость в ней меньше и, следовательно, где сечение струи больше, и обратно. Из рис. 311 видно, что сечение струи велико в тех местах, где линии тока расходятся; там же, где сечение струи меньше, линии тока сближаются. Поэтому закон Бернулли можно сформулировать еще так: в тех местах потока, где линии тока гуще, давление меньше, а в тех местах, где линии тока реже, давление больше.

Возьмем трубу, имеющую сужение, и будем пропускать по ней с большой скоростью воду. Согласно закону Бернулли, в суженной части давление будет понижено. Можно так подобрать форму трубы и скорость потока, что в суженной части давление воды будет меньше атмосферного. Если теперь присоединить к узкой части трубы отводную трубку (рис. 312), то наружный воздух будет засасываться в место с меньшим давлением: попадая в струю, воздух будет уноситься водой. Используя это явление, можно построить разрежающий насостак называемый водоструйный насос. В изображенной на рис. 313 модели водоструйного насоса засасывание воздуха производится через кольцевую щель 1, вблизи которой вода движется с большой скоростью. Отросток 2 присоединяется к откачиваемому сосуду. Водоструйные насосы не имеют движущихся твердых частей (как, например, поршень в обычных насосах), что составляет одно из их преимуществ.

Рис. 312. Воздух засасывается в узкую часть трубы, где давление меньше атмосферного

Рис. 313. Схема водоструйного насоса

Будем продувать воздух по трубке с сужением (рис. 314). При достаточной скорости воздуха давление в суженной части трубки будет ниже атмосферного. Жидкость из сосуда будет засасываться в боковую трубку. Выходя из трубки, жидкость будет распыляться струей воздуха. Этот прибор называется пульверизаторомраспылителем.

Рис. 314. Пульверизатор

Источник

Adblock
detector