Меню

В резонансных преобразователях давления оно преобразуется

Принципы измерения, применяемые в датчиках давления

Емкостный принцип измерения

В 60-х годах XX в. были разработаны первые аналоговые электронные датчики давления, в которых использовался емкостный принцип измерения.

Атмосферное для датчиков избыточного давления и вакуум для датчиков абсолютного давления.

Емкостный сенсор в его современном варианте представляет собой конденсатор, образованный диэлектрической оболочкой сенсора, помещенной внутри прочного металлического корпуса, измерительными электродами, выполняющими функцию обкладок конденсатора, и упругой металлической или керамической мембраной. Пространство между мембраной и электродами заполнено силиконовым маслом, служащим для передачи давления на мембрану и одновременно для увеличения емкости конденсатора. При подаче разности давлений на сенсор мембрана деформируется, и емкость между обкладками изменяется. Измерение емкости производится электронным модулем датчика, подключенным к обкладкам сенсора. Кроме того, сенсор обычно содержит еще термопреобразователь (на рисунке не показан).
Преимуществами емкостного принципа измерения являются сравнительно простая (на первый взгляд) конструкция сенсора, достаточно высокая чувствительность (∆C/C = 15. 20%) и большой практический опыт разработки датчиков с емкостными сенсорами, накопленный к настоящему времени.
Однако, несмотря на более чем 30-летнюю историю своего применения и совершенствования, емкостные сенсоры и сейчас обладают весьма существенными недостатками и ограничениями, вытекающими из базовых законов физики и до конца неустранимыми за счет совершенствования конструкции, материалов и технологии изготовления. Такими недостатками являются:

  • нелинейный выходной сигнал сенсора;
  • значительный гистерезис (из-за неидеальных упругих свойств мембраны);
  • сильное влияние статического давления (за счет изменения диэлектрической проницаемости заполняющей жидкости);
  • существенное влияние температуры (за счет температурного расширения элементов сенсора и изменения диэлектрической проницаемости);
  • недостаточная стабильность (из-за «усталости» материала мембраны);
  • чувствительность к вибрации (резонансная частота колебаний мембраны находится в пределах спектра промышленных вибраций).

Часть этих недостатков (нелинейность, влияние температуры и отчасти давления) до определенной степени компенсируется в современных серийных датчиках путем так называемой «характеризации», т. е. калибровки датчиков на заводе-изготовителе при различных температурах и давлениях с дальнейшим расчетом и «прошивкой» таблицы поправочных коэффициентов в память микропроцессорного электронного модуля. Это весьма трудоемкая и дорогостоящая проце­дура, требующая специального высокоточного оборудования, что сказывается на стоимости датчиков.
Другие недостатки (гистерезис, дрейф нуля, остаточное влияние статического давления, чувствительность к вибрации) не могут быть скомпенсированы характеризацией. Чтобы уменьшить эти недостатки, изготовители применяют современные прогрессивные материалы для центральной мембраны сенсора, а также различные, все более изощренные варианты конструкции сенсора. Определенный прогресс в данном вопросе имеется, однако, кардинальные решения, устраняющие указанные недостатки, невозможны в принципе, поскольку эти недостатки заложены в самом емкостном принципе измерения. А каждое следующее небольшое улучшение характеристик значительно усложняет конструкцию и технологию изготовления датчика, что ведет к его удорожанию и не способствует повышению надежности.

Тензо- или пьезорезистивный принцип измерения

Следующим после емкостного был предложен тензо- или пьезорезистивный принцип измерения давления, основанный на изменении удельного сопротивления вещества при деформации (тензорезистивный эффект). Термин «тензорезистивный» употребляется, как правило, по отношению к сенсорам, в которых используются тонкопленочные тензопреобразователи, либо структуры КНС (кремний на сапфире). В таких сенсорах упругим элементом является металлическая или керамическая мембрана, на которую наклеивается полупроводниковый тензопреобразователь. «Пьезорезистивными» обычно называют монокристаллические кремниевые сенсоры с диффузионными пьезорезисторами, в которых упругим элементом служит сама кремниевая мембрана.
Типичный тензорезистивный сенсор давления на основе структуры КНС состоит из упругой металлической мембраны, к которой припаян тензопреобразователь, представляющий собой подложку из сапфира, на которой методом гетероэпитаксиального наращивания сформирован измерительный мост Уитстона из кремниевых тензорезисторов. Кроме тензомоста, на подложке сформирована схема температурной компенсации (на рисунке не показана). Мембрана по технологическим соображениям делается достаточно толстой, поскольку поверхность, на которую припаивается КНС, должна быть отполирована с высокой чистотой.
Достоинствами тензорезистивного принципа измерения давления являются сравнительная простота в изготовлении, невысокая стоимость и потенциально широкий диапазон рабочих температур.
К недостаткам тензорезистивных сенсоров можно отнести:

  • низкую чувствительность (в пределах 1%);
  • значительные гистерезисные явления и нестабильность (из-за неоднородности конструкции и «усталости» металла мембраны);
  • сильное влияние температуры (за счет различия коэффициентов температурного расширения элементов сенсора и изменения электропроводности кремния);
  • сильное влияние статического давления (из-за различия упругих свойств элементов конструкции);
  • наличие нелинейности.
Читайте также:  Как отключить датчик давления кондиционера

Так же, как и емкостные, современные тензорезистивные датчики подвергаются при выпуске характеризации.
Данный тип сенсора нашел применение в аналоговых однопредельных датчиках избыточного и абсолютного давления, требования к которым существенно менее жесткие, чем к многопредельным датчикам давления. Ведущими мировыми производителями тензорезистивные многопредельные датчики давления сейчас практически не выпускаются.

Конструкция пьезорезистивного сенсора представлена на рисунке. Как и тензорезистивный, он содержит упругую мембрану, закрепленную на стеклянном основании, на которой имеется мост Уитстона, преобразующий деформацию мембраны в электрический сигнал. Однако в данном случае мембрана изготавливается из монокристаллического кремния, а вместо тензорезисторов используются сформированные методом диффузии пьезорезисторы. Поскольку жесткость кремниевой мембраны значительно ниже, чем металлической, разность давлений передается от наружных разделительных мембран через силиконовое масло непосредственно на сенсор без использования рычагов, тяг и т. п.
Достоинствами пьезорезистивных сенсоров яв­ляются малый гистерезис, стойкость к вибрации и однородность упругой мембраны.
Недостатки в основном те же, что у тензорезистивных, но выражены в меньшей степени:

  • низкая чувствительность (2. 5%);
  • сильное влияние температуры (за счет изменения удельного сопротивления пьезорезисторов);
  • существенное влияние статического давления;
  • недостаточная стабильность (фактором дрейфа является загрязненность примесями);
  • наличие нелинейности.

При применении емкостных, тензо- и пьезорезистивных сенсоров в многопредельных перенастраиваемых датчиках давления имеет значение еще один их недостаток – аналоговый выходной сигнал, который необходимо усиливать и оцифровывать для обработки микропроцессором электронного модуля.
Обобщенная функциональная схема датчика давления с аналоговым сигналом сенсора представлена на рисунке. Несмотря на наличие микропроцессора, такой датчик не может полностью реализовать все преимущества цифровой схемотехники, поскольку аналоговые цепи измерительного усилителя и АЦП являются потенциальным источником шумов, нелинейности и дрейфа. Кроме того, в этой схеме при перенастройке шкалы для максимального использования разрядности АЦП изменяется коэффициент усиления сигнала с сенсора. Это приводит к необходимости проверки и подстройки нуля после перенастройки шкалы (для лучших датчиков такого типа) и даже к многократной итерационной подстройке нуля и шкалы с использованием калибратора давления и тока (для менее совершенных датчиков). Использование цифровых коммуникационных протоколов (типа HART и других) не избавляет от этой процедуры, просто подстройка производится с клавиатуры коммуникатора, а не с помощью потенциометров и кнопок.

Резонансный принцип измерения давления

Резонансный принцип измерения давления основан на преобразовании резонатора деформации в частоту колебаний.

Конструкция и схема подключения резонансного сенсора представлены на рисунке. Сенсор представляет собой монокристаллическую кремниевую мембрану специальной конструкции, на которой методом эпитаксиального наращивания сформированы два резонатора Н-образной формы. Мембрана закреплена на стеклянной подложке, разность давлений от внешних разделительных мембран датчика передается на сенсор через силиконовое масло. Резонаторы находятся в поле постоянного магнита, и каждый из них подключен в качестве частотно-задающего элемента в цепь обратной связи генератора переменного напряжения. За счет пьезоэлектрического эффекта, которым обладает кремний, напряжение на одной паре контактов резонатора преобразуется в его деформацию, а затем обратно в напряжение на другой паре контактов. В результате в цепи генерируется синусоидальное переменное напряжение на собственной частоте резонатора, поскольку он обладает очень высокой добротностью. Кварцевые резонаторы более простой конструкции повсеместно используются в электронике в качестве высокостабильных частотнозадающих элементов. Хорошо известно, что собственная частота такого резонатора определяется только тремя параметрами: его массой, геометрическими размерами и модулем Юнга.

Читайте также:  Как стабилизировать давление в организме

При приложении к сенсору разности давлений мембрана изгибается, в результате ее деформации собственные частоты резонаторов изменяются пропорционально приложенному давлению. Сенсор спроектирован таким образом, что один резонатор при этом растягивается, а другой сжимается. Соответственно частота первого резонатора уменьшается, а второго увеличивается. Разность этих частот, прямо пропорциональная разности давлений, измеряется электронным модулем датчика и по ней вычисляется разность давлений.
Дифференциально-резонансный принцип измерения и конструкция кремниевого резонансного сенсора обладают целым рядом очень важных преимуществ и обеспечивают разработчикам практически неограниченные возможности для совершенствования датчиков давления.

Во-первых, резонансный сенсор благодаря абсолютным упругим свойствам монокристаллического кремния не имеет гистерезиса ( 0, то f1 > f2;
если ∆P

Источник

Частотно-резонансный датчик давления

В основу такого сенсора положен известный «частотно-резонансный» принцип (при приложении давления к чувствительному элементу датчика происходит пропорциональное изменение частоты собственных колебаний резонатора). Этот принцип можно наглядно продемонстрировать на примере струны: натяжение струны контролируется ее собственной частотой колебаний (тоном). При натяжении струны ее тон (частота собственных колебаний) становиться выше, при ослаблении – ниже. При колебаниях струны в магнитном поле в ней возникает переменная ЭДС с частотой, равной частоте колебаний струны.

На этом принципе основана работа сенсоров давления DPHarp (Differential Pressure High Accuracy Resonant Pressure sensor) фирмы Yokogawa. Уникальность сенсора DPHarp заключается в том, что конструкция имеет чрезвычайно малые размеры (десятки микрон) в виде единого монокристалла кремния (кремниевый резонатор) без всяких швов, стыков и т.п.

Рассмотрим конструкцию сенсора (рис.9). В качестве упругого элемента используется кремниевая диафрагма, на которой расположены два чувствительных элемента. Чувствительные элементы — резонаторы расположены так, что их деформации отличаются по знаку при приложении разности давлений к сенсору.

Рис. 9. Сенсор давления DPHarp фирмы Yokogawa.

Рис. 10. Электрическая схема частотного преобразователя.

Возбуждение колебаний и передача частоты механических колебаний в электрический, частотный сигнал происходят путем помещения двухконтурных резонаторов в постоянное магнитное поле (рис. 10-11) и пропускания переменного электрического тока через тело резонатора в контуре возбуждения. Благодаря эффекту электромагнитной индукции, в измерительном контуре возникает переменная ЭДС с частотой, равной частоте колебаний резонатора измерительного контура. Обратная связь контура возбуждения по измерительному контуру вместе с эффектом сдвига частоты вынужденных колебаний в сторону резонансной частоты обеспечивают постоянное соответствие частоты электрических колебаний резонансной (собственной) частоте механических колебаний тела резонатора. Собственная частота такого ненагруженного резонатора составляет около 90 кГц.

Рис. 11. Схема частотного преобразователя.

Дата добавления: 2015-07-02 ; Просмотров: 2841 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Читайте также:  Повышенное давление может быть признаком рака

Источник

Резонансный принцип измерения давления

Резонансный принцип измерения давления основан на преобразовании резонатора деформации в частоту колебаний.

Конструкция и схема подключения резонансного сенсора представлены на рисунке. Сенсор представляет собой монокристаллическую кремниевую мембрану специальной конструкции, на которой методом эпитаксиального наращивания сформированы два резонатора Н-образной формы. Мембрана закреплена на стеклянной подложке, разность давлений от внешних разделительных мембран датчика передается на сенсор через силиконовое масло. Резонаторы находятся в поле постоянного магнита, и каждый из них подключен в качестве частотно-задающего элемента в цепь обратной связи генератора переменного напряжения. За счет пьезоэлектрического эффекта, которым обладает кремний, напряжение на одной паре контактов резонатора преобразуется в его деформацию, а затем обратно в напряжение на другой паре контактов. В результате в цепи генерируется синусоидальное переменное напряжение на собственной частоте резонатора, поскольку он обладает очень высокой добротностью. Кварцевые резонаторы более простой конструкции повсеместно используются в электронике в качестве высокостабильных частотнозадающих элементов. Хорошо известно, что собственная частота такого резонатора определяется только тремя параметрами: его массой, геометрическими размерами и модулем Юнга.

При приложении к сенсору разности давлений мембрана изгибается, в результате ее деформации собственные частоты резонаторов изменяются пропорционально приложенному давлению. Сенсор спроектирован таким образом, что один резонатор при этом растягивается, а другой сжимается. Соответственно частота первого резонатора уменьшается, а второго увеличивается. Разность этих частот, прямо пропорциональная разности давлений, измеряется электронным модулем датчика и по ней вычисляется разность давлений.
Дифференциально-резонансный принцип измерения и конструкция кремниевого резонансного сенсора обладают целым рядом очень важных преимуществ и обеспечивают разработчикам практически неограниченные возможности для совершенствования датчиков давления.

Во-первых, резонансный сенсор благодаря абсолютным упругим свойствам монокристаллического кремния не имеет гистерезиса ( 0, то f1 > f2;
если ∆P -5 °C -1 ) обеспечивает самокомпенсацию сенсора относительно влияния температуры (

В-четвертых, частотный выходной сигнал с сенсора не требует аналого-цифрового преобразования. Резонансные частоты измеряются непосредственно цифровыми счетчиками с очень высокой точностью (

Список литературы

1. Информатика: учебник.- 3-е переработанное изд. /Под ред. Н.В. Макаровой.- М.: Финансы и статистика, 2006. – 768с.

2. Ефимова О., Морозов В., Шафрин Ю. “Курс компьютерной технологии в двух томах” Москва, АБФ, 1998.

3. Голицына О.Л., Партыка Т.Л., Попов И.И. Программное обеспечение: учебное пособие.- М.: ФОРУМ: ИНФРА – М, 2006.- 432с.

4. Н.В. Максимов, Т.Л. Партыка, И.И. Попов Архитектура ЭВМ и вычислительных систем: Учебник. М: ФОРУМ: ИНФРА – М, 2006.- 512с.

5. Куприянов А.Н. Основы защиты информации: учебное пособие для студентов высших учебных заведений / А.И. Куприянов, А.В. Сахаров, В.А. Шевцов. – М.: Издательство центр «Академия», 2006.- 256с.

6. Шафрин Ю.А. Информационные технологии в 2ч. Ч.1: Основы информатики и информационных технологий / Шафрин Ю.А. – М.: БИНОМ. Лаборатория знаний, 2004. — 316с.

7. Шафрин Ю.А. Информационные технологии в 2ч. Ч.2: Офисная технология и информационные системы/ Шафрин Ю.А.- М.: Бином. Лаборатория знаний, 2004. -316с.

8. Максимов Н.В., Попов И.И. Компьютерные сети: Учебное пособие.- М.: ФОРУМ: ИНФРА – М, 2005. 336с.

9. Гуда А.Н., Бутакова М.А., Нечитайло Н.М., Чернов А.В. Информатика. Общий курс: Учебник / Под ред. академика РАН В.И. Колесникова. – М.: Издательско-торговая корпорация «Дашков и Ко»; Ростов н/Д: Наука-Пресс, 2006. – 400 с.

Источник

Adblock
detector