Меню

В состоянии полного насыщения клетки водой тургорное давление

В состоянии полного насыщения клетки водой тургорное давление

При растворении в воде другого вещества, концентрация ее молекул, а, следовательно, и водный потенциал, снижаются. Таким образом, у всех растворов водный потенциал ниже, чем у чистой воды. Количественно это понижение выражают величиной, называемой осмотическим потенциалом (у0). Иными словами, осмотический потенциал — это мера снижения водного потенциала системы в результате присутствия в ней «неводных» молекул. Осмотический потенциал водного раствора всегда отрицателен. Чем больше в растворе молекул растворенного вещества, тем этот потенциал ниже.

Гидростатический потенциал

Если к чистой воде или раствору приложить давление, то водный потенциал возрастает, поскольку у жидкости возникает тенденция переместиться в другое место. Такая ситуация возможна в живой клетке. Например, когда за счет осмоса в нее поступает вода, клетка набухает, и внутри нее повышается давление, называемое тургорным. Сходным образом водный потенциал плазмы крови повышается до положительной отметки кровяным давлением в почечных клубочках. Гидростатический потенциал обычно положителен, но в некоторых случаях, например когда столб воды, «висящий» в ксилеме, растягивается, он может стать отрицательным (возникает отрицательное давление).

На водный потенциал влияет как концентрация растворенного в воде вешества, так и давление, поэтому можно выразить его в виде уравнения:

Водный потенциал = Осмотический потенциал + Гидростатический потенциал
Осмотический потенциал всегда отрицателен, а гидростатический обычно положителен.

Осмос и растительные клетки

На рисунке показаны полупроницаемые мембраны, имеюшие важное значение для водного режима растительной клетки. Клеточная стенка обычно полностью проницаема для любых растворенных молекул, поэтому ее нельзя считать осмотическим барьером. В клетке часто имеется крупная центральная вакуоль, содержимое которой, клеточный сок, влияет на общий осмотический потенииап системы. В целом водный режим клетки зависит от двух мембран — плазмалеммы, окружающей снаружи цитоплазму, и тонопласта, ограничивающего вакуоль.

Если растительная клетка контактирует с раствором, водный потенци&т которого ниже, чем у ее содержимого (например, с концентрированным сахарным сиропом), то вода будет выходить из нее за счет осмоса через плазмалемму. Сначала воды станет меньше в цитоплазме, а затем и в вакуоле, откуда она выйдет сквозь тонопласт. Протопласт, т. е. живое содержимое растительной клетки, окруженное клеточной стенкой, спадется и отойдет от этой стенки, как бы сжавшись внутри нее. Этот процесс называется плазмолизом, а клетка в таком состоянии — плазмолизированной. Момент, когда протопласт еще прилегает к клеточной стенке, но уже перестал оказывать на нее давление, называется начальным плазмолизом. В этот момент клетка теряет тургор, т. е. становится вялой. Вода будет покидать протопласт до тех пор, пока его содержимое по водному потенциалу не сравняется с окружающим раствором. Тогда установится равновесное состояние, и спадение протопласта прекратится.

Обычно плазмолиз обратим и не причиняет существенного вреда клетке. Если затем перенести клетку в чистую воду или в раствор с более высоким водным потенциалом, чем у цитоплазмы, то вода будет поступать в нее за счет осмоса. По мере увеличения объема протопласта он станет давить на клеточную стенку и растянет ее. Эта стенка прочная и относительно жесткая, поэтому давление на нее быстро возрастет — повысится гидростатический (\\/г) потенциал клетки. Внешне поступление в нее воды путем осмоса приведет к набуханию, напряженному состоянию, которое называется тургором. Говорят, что клетка становится тургесцентной, а давление друг на друга ее содержимого и стенки называют тургорным. Полная тургесцентность, т. е. максимальное значение \\/г, достигаются при погружении клетки в чистую воду.

Читайте также:  Норма атмосферного давления в гектопаскалях

Когда водный потенциал окружающего клетку раствора уравновесится ее возросшим гидростатическим потенциалом, внутрь будет проникать столько же водных молекул, сколько выходить наружу за то же время. Несмотря на продолжающееся их движение через мембрану, изменения системы в целом прекратятся. Такое равновесие со средой называется динамическим. Осмотический потенциал клеточного содержимого останется скорее всего ниже, чем снаружи, поскольку для роста тургорного давления нужно не так много воды — меньше, чем для существенного разбавления внутреннего раствора. Однако эта разница компенсируется более высоким, чем снаружи, гидростатическим потенциалом клетки. Суммарные же водные потенциалы с обеих сторон клеточной стенки сравняются.

Тургорное давление может вырасти только в замкнутом объеме, ограниченном клеточной стенкой. У животных клеток такой стенки нет, а их наружная мембрана слишком тонка, чтобы сдержать набухание цитоплазмы при поступлении внутрь воды из раствора с более высоким водным потенциалом. В такой среде они просто сильно набухнут и лопнут, если не будут защищены особым механизмом осморегуляции.

Источник

Тургорное давление — это биологический процесс. Его суть и функции в клетке

Живая клетка является целостной биосистемой, все части которой должны работать в связке для обеспечения нормального функционирования и жизни в целом. Одна из характеристик, напрямую влияющая на жизнеспособность конкретно растительной клетки — это тургорное давление. Между растительными и животными клетками имеются довольно серьезные различия в строении. Это происходит из-за принадлежности их организмов к разным царствам с разными потребностями и жизненным циклом.

Тургорное давление

Это прежде всего способность клетки не терять форму благодаря давлению жидкости изнутри на клеточную стенку. Благодаря процессу, называемому в физике осмосом, в пересушенную клетку сквозь оболочки поступает жидкость, которая занимает некоторый объем, как бы подталкивая цитоплазму клетки ближе к наружной ее оболочке. Такое жидкостное давление необходимо также и для того, чтобы регулировать сам процесс дальнейшего поступления жидкости: при полном наполнении клетки осмос прекращается.

Следует отдельно пояснить, что животные клетки ввиду отсутствия в них вакуолей и клеточного сока имеют минимальное тургорное давление. Поэтому дальнейшая информация будет касаться лишь растительных клеток — в них тургор весьма значителен.

Осмотическое давление

Не следует путать осмотическое и тургорное давление, несмотря на то, что по описанию процессы схожи. На самом деле осмотическое давление является составной частью тургора: внешний и внутренний осмосы в сочетании с уровнем упругости клеточной стенки обеспечивают соблюдение баланса внутреннего давления жидкости в клетке. Таким образом, при достижении порога жидкости в клетке внутреннее осмотическое давление начинает препятствовать поступлению нового раствора. А если уровень внутреннего осмотического давления падает, то при помощи внешнего жидкость снова начинает поступать в клетку.

Читайте также:  Лечение повышенного давления по неумывакину

Органоиды

Какие органоиды участвуют в создании тургорного давления? Все составляющие клетку части объединены в единую систему. Поэтому так или иначе в поддержке тургорного давления участвует все. Однако наибольшее влияние на создание тургорного давления и его поддержание оказывает, без сомнения, вакуоль. Именно она содержит в себе запасы клеточного сока, нужного в том числе и для поддержания тургора.

Следующий после вакуоли крайне важный органоид для тургорного давления — это клеточная стенка. Она полупроницаема и позволяет пропускать только строго определенные растворенные в жидкости вещества, задерживая нежелательные. Также ее упругость напрямую влияет на сохранение клеткой формы. В случае, если клеточная стенка повреждена, при избыточном давлении жидкости на нее клетка может разрушиться.

Функции тургора

Помимо достаточно очевидной функции поддержания формы клетки, тургорное давление — это еще и прямое влияние на все физиологические процессы клетки. Оно регулирует водный обмен, позволяет соблюдать баланс общего давления в клетке, участвует в процессе питания. Но так как клетка является целостной системой, не будет ошибкой сказать, что это давление воздействует буквально на всю жизнедеятельность как отдельной клетки, так и целого растения.

Также некоторые из органов растения (в основном те, которые обеспечивают его питанием: корни, корневища и др.) напрямую зависят от регуляции тургорного давления. Именно оно обуславливает способность корня всасывать питательные вещества из окружающей среды. И, как следствие, обеспечивать растению саму жизнь. Баланс внутриклеточного давления позволяет растению получать ровно столько питательных веществ, сколько ему будет необходимо. Не больше и не меньше.

Регулирование давления в растительной клетке

Как уже было отмечено выше, тургор регулируется при помощи разности внутреннего давления жидкости и растворенных в ней веществ и внешнего давления среды. При значительном падении внутреннего давления клетка начинает впускать в себя жидкость и старается максимально быстро пополнить запасы клеточного сока.

Но есть один нюанс. Если количество жидкого вещества внутри стало значительным, и оно начало оказывать усиленное давление на внешнюю стенку клетки, то поступление новых запасов временно прекращается и возобновляется, лишь когда внутреннее давление снова упадет. Таким образом, регулируется содержание в клетке как самой по себе жидкости, так и растворенных в ней веществ.

Однако, помимо баланса давлений, на тургор может оказывать влияние и клеточная мембрана. Каким образом? Изменение ее проницаемости и упругости может изменять как наполнение клеточного сока определенными веществами, так и сам уровень давления, который может выдержать клетка.

Тот факт, что без тургора растения были бы неспособны к существованию, очевиден. Такой простой, но в то же время важный процесс, как поступление и расход жидкости в клетке, влияет на всю жизнь живого организма и требует контроля, для чего и были созданы специализированные органоиды, такие как вакуоль.

Читайте также:  Преобразователь давления rosemount 2051

Источник

Плазмолиз и тургорное давление

Если клетка находится в контакте с гипертоническим раствором, т.е. с раствором, имеющим более низкий водный потенциал (с более высокой концентрацией растворённого вещества), чем собственное содержимое клетки, вода начинает выходить из неё путём осмоса через плазматическую мембрану. Сначала теряется вода цитоплазмы, а затем через тонопласт выходит вода из вакуоли. Протопласт, т.е. живое содержимое клетки, окружённое клеточной стенкой, сморщивается и в конце концов отстаёт от клеточной стенки. Этот процесс называется плазмолизом,а про такую клетку говорят, что она плазмолизирована. При начинающемся плазмолизе протопласт только-только перестаёт оказывать какое-либо давление на клеточную стенку, и клетка становится вялой. Вода выходит из протопласта до тех пор, пока его содержимое не приобретает такой же водный потенциал, что и окружающий раствор. После этого клетка перестаёт сморщиваться дальше. Процесс плазмолиза обычно обратим, клетка при этом не получает никаких стойких повреждений.

Если плазмолизированную клетку поместить в чистую воду или в гипотонический раствор с более высоким, чем у содержимого клетки, водным потенциалом, вода начинает поступать в клетку путём осмоса.

По мере того как увеличивается объём протопласта, он начинает давить на клеточную стенку и растягивает её. Клеточная стенка сравнительно жёсткая, поэтому давление внутри клетки растёт очень быстро. При постепенном увеличении тургорного давления из-за того, что вода поступает в клетку за счёт осмоса, клетка становится тургесцентной. Полное набухание клетки, т.е. максимальное тургорное давление, наблюдается только тогда, когда клетку помещают в чистую воду. Когда стремление воды войти в клетку и тургорное давление в точности уравновешивают друг друга, из клетки выходит ровно столько воды, сколько в неё входит, и клетка теперь находится в равновесии с окружающим её раствором. В чистой воде тургор восстанавливается – это деплазмолиз.

Поскольку цитоплазма является полупроницаемой, одни вещества свободно проходят через неё, а другие не проникают, хотя и растворены в воде. Вода свободно проходит в клетку через оболочку, которая представляет собой мелкопористую мембрану.

Интенсивность поглощения клеткой воды – сосущая сила клетки (S) зависит от осмотического давления в клетке (Р) и тургорного давления, т.е. сопротивления оболочки (Т).

S = Р – Т

Когда осмотическое давление станет равным тургорному, т.е. Р=Т,тогда сосущая сила будет равна 0, т.е. S=0, и вода перестанет поступать в клетку. Состояние напряжения клетки называется тургором.

Кроме осмотического и тургорного давления на поступление воды в клетку оказывают огромное влияние электроосмотические силы.Цитоплазма способна адсорбировать, т.е. поглощать своей поверхностью ионы воды и других веществ. Это поглощение происходит благодаря возникновению электрических зарядов в пограничных слоях плазмолеммы, мезоплазмы и тонопласта и созданию разности потенциалов.

Дата добавления: 2015-07-02 ; Просмотров: 3338 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector