Меню

В запаянной пробирке находится воздух при атмосферном давлении

В запаянной пробирке находится воздух при атмосферном давлении

«Физика — 10 класс»

Если при переходе газа из начального состояния в конечное один из параметров не меняется, то разумно использовать один из газовых законов (10.6), (10.7) или (10.9).

Для этого нужно знать зависимость параметров друг от друга, которая в общем случае даётся уравнением состояния, а в частных — газовыми законами.

Баллон вместимостью V1 = 0,02 м3, содержащий воздух под давлением Pi — 4 • 10° Па, соединяют с баллоном вместимостью V2 = 0,06 м3, из которого воздух выкачан.
Определите давление р, которое установится в сосудах.
Температура постоянна.

Воздух из первого баллона займёт весь предоставленный ему объём V1 + V2.
По закону Бойля—Мариотта p1V1 = p(V2 + V1).

Отсюда искомое давление

В запаянной пробирке находится воздух при атмосферном давлении и температуре 300 К.
При нагревании пробирки на 100 °С она лопнула.
Определите, какое максимальное давление выдерживает пробирка.

Объём воздуха при нагревании остаётся постоянным.

Для определения давления в пробирке при нагревании до 100 °С применяем закон Шарля

По условию Т2 = 400 К.
Заметим, что изменение температуры по шкале Кельвина равно изменению температуры по шкале Цельсия.

Однако разорваться пробирке мешает атмосферное давление.
Тогда окончательно давление, которое может выдержать пробирка, рmах = ратм + р2 ≈ 2,25 атм.

При нагревании газа при постоянном объёме на 1 К давление увеличилось на 0,2 %.
Чему равна начальная температура газа?

Газ нагревается при постоянном объёме — процесс изохорный.
По закону Шарля

где Т2 = Т1 + ΔТ.
Из условия задачи следует, что р2 = p1 • 1,002, т. е.

откуда Т1 = ΔТ/0,002 = 500 К.

Давление воздуха внутри бутылки, закрытой пробкой, равно 0,1 МПа при температуре t1 = 7 °С.
На сколько градусов нужно нагреть воздух в бутылке, чтобы пробка вылетела?
Без нагревания пробку можно вынуть, прикладывая к ней силу 30 Н.
Площадь поперечного сечения пробки 2 см 2 .

Чтобы пробка вылетела из бутылки, необходимо, чтобы давление воздуха в бутылке было равно

При нагревании объём не изменяется.
По закону Шарля

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Читайте также:  Гидростатическое давление свойства виды давления

Основные положения МКТ. Тепловые явления — Физика, учебник для 10 класса — Класс!ная физика

Источник

§ 66. Примеры решения задач по теме «Газовые законы»

Если при переходе газа из начального состояния в конечное один из параметров не меняется, то разумно использовать один из газовых законов (10.6), (10.7) или (10.9).

Для этого нужно знать зависимость параметров друг от друга, которая в общем случае даётся уравнением состояния, а в частных — газовыми законами.

Задача 1. Баллон вместимостью V1 = 0,02 м3, содержащий воздух под давлением Pi — 4 • 10° Па, соединяют с баллоном вместимостью V2 = 0,06 м3, из которого воздух выкачан. Определите давление р, которое установится в сосудах. Температура постоянна.

Р е ш е н и е. Воздух из первого баллона займёт весь предоставленный ему объём V1 + V2. По закону Бойля—Мариотта p1V1 = p(V2 + V1).

Отсюда искомое давление

Задача 2. В запаянной пробирке находится воздух при атмосферном давлении и температуре 300 К. При нагревании пробирки на 100 °С она лопнула. Определите, какое максимальное давление выдерживает пробирка.

Р е ш е н и е. Объём воздуха при нагревании остаётся постоянным.

Для определения давления в пробирке при нагревании до 100 °С применяем закон Шарля

По условию Т2 = 400 К. Заметим, что изменение температуры по шкале Кельвина равно изменению температуры по шкале Цельсия.

Тогда давление

Однако разорваться пробирке мешает атмосферное давление. Тогда окончательно давление, которое может выдержать пробирка, рmах = ратм + р2 ≈ 2,25 атм.

Задача 3. При нагревании газа при постоянном объёме на 1 К давление увеличилось на 0,2 %. Чему равна начальная температура газа?

Р е ш е н и е. Газ нагревается при постоянном объёме — процесс изохорный. По закону Шарля где Т2 = Т1 + ΔТ. Из условия задачи следует, что р2 = p1 • 1,002, т. е. откуда Т1 = ΔТ/0,002 = 500 К.

Задача 4. Давление воздуха внутри бутылки, закрытой пробкой, равно 0,1 МПа при температуре t1 = 7 °С. На сколько градусов нужно нагреть воздух в бутылке, чтобы пробка вылетела? Без нагревания пробку можно вынуть, прикладывая к ней силу 30 Н. Площадь поперечного сечения пробки 2 см 2 .

Читайте также:  Какое давление в цилиндре в момент воспламенения

Р е ш е н и е. Чтобы пробка вылетела из бутылки, необходимо, чтобы давление воздуха в бутылке было равно

При нагревании объём не изменяется. По закону Шарля откуда Следовательно,

Задачи для самостоятельного решения

1. Компрессор, обеспечивающий работу отбойных молотков, засасывает из атмосферы воздух объёмом V = 100 л в 1 с. Сколько отбойных молотков может работать от этого компрессора, если для каждого молотка необходимо обеспечить подачу воздуха объёмом V1 = 100 см 3 в 1 с при давлении р = 5 МПа? Атмосферное давление р = 100 кПа.

2. Определите температуру газа, находящегося в закрытом сосуде, если давление газа увеличивается на 0,4 % от первоначального давления при нагревании на 1 К.

3. Высота пика Ленина на Памире равна 7134 м. Атмосферное давление на этой высоте равно 3,8 • 10 4 Па. Определите плотность воздуха на вершине пика при температуре 0 °С, если плотность воздуха при нормальных условиях 1,29 кг/м 3 .

Образцы заданий ЕГЭ

С1. Идеальный газ изотермически сжали из состояния с объёмом 6 л так, что давление газа изменилось в 3 раза. На сколько уменьшился объём газа в этом процессе?

С2. Поршень площадью 10 см 2 и массой 5 кг может без трения перемещаться в вертикальном цилиндрическом сосуде, обеспечивая при этом его герметичность. Сосуд с поршнем, заполненный газом, покоится на полу неподвижного лифта при атмосферном давлении 100 кПа, при этом расстояние от нижнего края поршня до дна сосуда 20 см. Каким станет это расстояние, когда лифт поедет вверх с ускорением, равным 2 м/с 2 ? Изменение температуры газа не учитывайте.

С3. С идеальным газом происходит изобарный процесс, в котором для увеличения объёма газа на 150 дм 3 его температуру увеличивают в 2 раза. Масса газа постоянна. Каким был первоначальный объём газа?

С4. Идеальный одноатомный газ в количестве ν = 0,09 моль находится в равновесии в вертикальном цилиндре под поршнем массой 5 кг. Трение между поршнем и стенками цилиндра отсутствует. Внешнее атмосферное давление p = 100 кПа. В результате нагревания газа поршень поднялся на высоту Δh = 4 см, а температура газа повысилась на ΔТ = 16 К. Чему равна площадь поршня?

Читайте также:  Манометры для испытаний высоким давлением

Источник

В запаянной пробирке находится воздух при атмосферном давлении и температуре 300 К. При нагревании пробирки на 100 °С она лопнула. Определите, какое максимальное давление выдерживает пробирка.

В физике упругость — это свойство твёрдых материалов возвращаться в изначальную форму при упругой деформации. Твёрдые предметы будут деформироваться после приложенной на них силы. Если убрать силу, то упругий материал восстановит начальную форму и размер.

Физические причины для упругого поведения могут быть совершенно различными для разных материалов. В металлах атомная решётка меняет размер и форму при приложении силы (добавлении энергии в систему). Когда сила убирается, решётка возвращается обратно в прежнее энергетическое состояние. Для резины и других полимеров упругость вызывается растяжением полимерной цепочки (см. «Высокоэластичное состояние»).

Абсолютная упругость — это идеализация реального мира, и даже при небольших деформациях мало материалов остаются совершенно упругими. В инженерном деле упругость материалов измеряется двумя типами параметров материала:

Модуль упругости показывает механическое напряжение (количество силы на единицу площади), которое необходимо приложить для достижения определённого уровня деформации. Модуль измеряется в паскалях (Па) или фунтах силы на кв. дюйм (psi или lbf/in2). Высокий модуль обычно показывает, что материал труднее деформировать. Предел упругости — максимальное напряжение, после которого материал больше не ведёт себя как упругий, и будет иметь место пластическая (необратимая) деформация материала. После снятия напряжения материал сохранит некоторую остаточную деформацию.

Чтобы описать относительную упругость двух материалов, должны рассматриваться и модуль, и предел упругости. У резины, как правило, низкий модуль, и она обычно сильно растягивается (у неё высокий предел упругости), и поэтому проявляет большую эластичность, чем металлы в ежедневном применении. Если взять два резиновых материала с одним и тем же пределом упругости, то тот, у кого более низкий модуль, будет казаться более эластичным.

Источник

Adblock
detector