Меню

Вентилятор статическое и динамическое давление вентилятора

Вентилятор статическое и динамическое давление вентилятора

Вентиляция — это регулируемый воздухообмен, осуществляемый с целью создания в помещениях жилых, общественных и промышленных зданий воздушной среды, благоприятной для здоровья и трудовой деятельности человека, а также для технологических целей. Вентиляционные системы — совокупность технических устройств, обеспечивающих воздухообмен. Побудителем движения воздуха в таких системах является вентилятор. Вентилятор — сложное техническое устройство, преобразующее кинетическую энергию вращающегося колеса в кинетическую и потенциальную энергии перемещаемого объема воздуха. Существует большое многообразие типов вентиляторов, однако в вентсистемах используется всего несколько из них. От выбора типа вентилятора и соответствия поставленной задаче зависят его габариты, потребляемая мощность, технические характеристики, а также шум и некоторые другие свойства вентсистемы.

Типы вентиляторов, используемых в системах вентиляции

Вентиляторы – лопаточные машины, предназначенные для перемещения воздуха или других газов. Вентиляторы условно делятся по развиваемому давлению на вентиляторы:

-среднего давления от 1000Па до 3000Па;

-высокого давления — свыше 3000Па.

Как правило, давление, развиваемое вентиляторами, работающими в вентиляционных системах, не превышает 2000Па. В системах вентиляции и кондиционирования используются следующие типы вентиляторов:

Схемы осевых вентиляторов приведены на рис.1.1. В осевых вентиляторах поток воздуха входит и выходит по оси вращения колеса. Осевые вентиляторы могут состоять из одного колеса (рис. 1.1а), колеса и спрямляющего аппарата (рис.1.1б), входного направляющего аппарата и колеса (рис.1.1в), входного направляющего аппарата, колеса и спрямляющего аппарата (рис.1.1г). Электродвигатель может быть расположен как перед колесом (рис.1.1а), так и за колесом (рис.1.1б), причем аэродинамические характеристики вентиляторов, имеющих одинаковые колеса, будут при этом приблизительно одинаковыми.

Рис.1.1 Схемы осевых вентиляторов:

а) К-колесо; б) К+СА -колесо и спрямляющий аппарат; в) ВНА+К –входной направляющий аппарат и колесо, г) ВНА+К+СА -входной направляющий аппарат, колесо и спрямляющий аппарат; 1-входной коллектор, 2-лопатки колеса, 3-втулка колеса, 4-электродвигатель, 5-корпус, 6,8-спрямляющий аппарат, 7-входной направляющий аппарат

Остаточная закрутка потока является источником потерь, кроме того может быть причиной дополнительных потерь в элементах, сопрягающих вентилятор с сетью на выходе. Для уменьшения закрутки за колесом используется спрямляющий аппарат. При равных частотах вращения и диаметрах колес, осевые вентиляторы создают в 2-3 раза меньшее давление, но имеют большую производительность, чем радиальные вентиляторы, поэтому в вентиляционных системах они используются в основном для перемещения больших объемов воздуха – на вытяжке, для создания противодымного подпора и т. д.

Осевые вентиляторы могут быть одноступенчатыми, двухступенчатыми и многоступенчатыми. В многоступенчатом вентиляторе, созданном на базе нескольких одноступенчатых, происхо-дит увеличение давления примерно пропорционально числу ступеней при прежней производительности. Сущест-вуют также схемы со встречным вращением и вентиляторы с меридио-нальным ускорением потока .

В радиальных колесах поток входит по оси вращения колеса, а выходит в радиальной плоскости. Спиральный корпус служит для преобразования потока на выходе из колеса и дополнительного повышения давления вентилятора. Наиболее широко применяются два типа радиальных колес: колеса с лопатками загнутыми назад и с лопатками загнутыми вперед. Радиальные вентиляторы развивают большее давление, по сравнению с осевыми вентиляторами, так как единице объема перемещаемого воздуха сообщается энергия при переходе от радиуса входа к радиусу выхода колеса.

Читайте также:  Влияние клева рыбы на повышение давления

Радиальный вентилятор имеет два входных отверстия и общее выходное и представляет как бы объединение двух зеркальных вентиляторов в спиральных корпусах. Такого типа вентиляторы имеют приблизительно удвоенную производительность (при том же давлении, что и единичный вентилятор). Многоступенчатые радиальные вентиляторы в системах вентиляции встречаются крайне редко. Среди рассматриваемых типов вентиляторов радиальные – наиболее используемые в вентиляционных системах.

В диаметральном вентиляторе поток входит в колесо в диаметральном направлении (перпендикулярно оси вращения колеса), и выходит также в диаметральном направлении. Угол между входом и выходом потока может быть разным, существуют также вентиляторы с различными углами выхода потока, вплоть до 180°. В диаметральных вентиляторах используются радиальные колеса с вперед загнутыми лопатками, близкие к тем, что используются в радиальных вентиляторах. Отличительной особенностью диаметральных вентиляторов является возможность увеличения длины колеса (осевой протяженности), что дает возможность увеличивать производительность вентилятора (при соответствующем увеличении мощности привода). Несмотря на очевидные компоновочные преимущества, диаметральные вентиляторы не нашли широкого применения в вентсистемах. Это связано с относительно малой аэродинамической эффективностью этих вентиляторов. В основном они используются в маломощных завесах, хотя известны попытки применения диаметральных вентиляторов в воздухоприточных установках.Основные свойства вентилятора, как устройства предназначенного для перемещения воздуха, принято оценивать по его аэродинамическим параметрам: давлению, производительности и потребляемой мощности при нормальных атмосферных условиях, а также коэффициенту полезного действия (КПД).

-давления вентилятора: статическое, полное, динамическое измеряются в Па (1 Па

-производительность вентилятора измеряется в м3/час, м3/с;

-потребляемая мощность вентилятора измеряется в Вт, кВт.

Полное давление вентилятора равно разности полных давлений потока за вентилятором и перед ним:

Здесь: P01 — осредненное по входному сечению, P02 -осредненное по выходному сечению полное давление потока.

Статическое давление вентилятора Psv равно разности полного давления Pv и динамического давления вентилятора Pdv:

Динамическое давление вентилятора Pdv определяется по среднерасходной скорости Vвых-вент выхода потока из вентилятора:

Скорость выхода потока из вентилятора (один из способов осреднения):

где Fвых — площадь поперечного сечения выхода потока из вентилятора; Q–производительность вентилятора.

Полный и статический КПД вентилятора:

где N — мощность, потребляемая вентилятором.

Nэл сеть – мощность, пот-ребляемая вентилятором из электрической сети: Nэл сеть= N/ (ηּ ηэл двиг),

где ηэл двиг – КПД электродвигателя.

В данной статье использованы материалы следующих изданий:

  1. Центробежные вентиляторы. Под ред. Т.С. Соломаховой. М., Машиностроение. 1975
  2. И.В.Брусиловский. Аэродинамика осевых вентиляторов. М., Машиностроение. 1984
  3. Проектирование и эксплуатация центробежных и осевых вентиляторов. Москва, ГОСГОРТЕХИЗДАТ. 1959
  4. Центробежные вентиляторы. Под ред. Т.С.Соломаховой. М., «Машиностроение», 1975

Источник

Полное, статическое и динамическое давление. Измерение давления в воздуховодах систем вентиляции

Полное, статическое и динамическое давление

При движении воздуха по ВВ в любом поперечном сечении различают 3 вида давления:

Статическое давление определяет потенциальную энергию 1 м 3 воздуха в рассматриваемом сечении. Оно равно давлению на стенки воздуховода. .

Динамическое давление – кинетическаяя энергия потока, отнесенная к 1 м 3 воздуха.

Читайте также:  Датчике абсолютного давления наддува форд коннект

– плотность воздуха,

— скорость воздуха, м/с.

Полное давление равно сумме статического и динамического давления.

Принято пользоваться значением избыточного давления, принимая за условный ноль атмосферное давление на уровне системы. В нагнетательных воздуховодах полное и статическое избыточное давление всегда «+», т.е. давление > . Во всасывающих воздуховодах полное и статическое избыточное давление «-».

Измерение давления в воздуховодах систем вентиляции

Давление в ВВ измеряется при помощи пневмометрической трубки и какого-либо измерительного прибора: микроманометра либо др.прибора.

Для нагнетательного воздуховода:

статическое давление – трубку статического давления к бачку микроманометра;

полное давление – трубку полного давления к бачку микроманометра;

динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.

Для всасывающего воздуховода:

статическое давление – трубку статического давления к капилляру манометра;

полное давление – трубку полного давления к капилляру микроманометра;

динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.

Схемы измерения давления в воздуховодах.

Билет №10

Потери давления в системах вентиляции

При движении по ВВ воздух теряет свою энергию на преодоление различных сопротивлений, т.е. происходят потери давления.

Потери давления на трение

– коэффициент сопротивления трения. Зависит от режима движения жидкости по воздуховоду.

— кинематическая вязкость, зависит от температуры.

При ламинарном режиме:

при турбулентном движении зависит от шероховатости поверхности трубы. Применяются различные формулы и широко известна формула Альтшуля:

– абсолютная эквивалентная шероховатость материала внутренней поверхности воздуховода, мм.

Для листовой стали 0,1мм; силикатобетонные плиты 1,5 мм; кирпич 4 мм, штукатурка по сетке 10 мм

Удельные потери давления

В инженерных расчетах пользуются специальными таблицами, в которых приводят значения для круглого воздуховода. Для воздуховодов из других материалов вводится поправочный коэффициент и равно:

.

Значение поправочного коэффициента приводится к справочнике в зависимости от вида материала и от скорости перемещения воздуха по воздуховоду.

Для прямоугольных воздуховодов за расчетную величину d принимают эквивалентныйdэк, при которой потери давления в круглом воздуховоде при той же скорости будут равны потерям давления в прямоугольном воздуховоде:

— стороны прямоугольного воздуховода.

Следует иметь в виду: расход воздуха прямоугольного и круглого воздуховодов с при равенстве скоростей не совпадает.

Дата добавления: 2018-02-18 ; просмотров: 18727 ;

Источник

Вентилятор статическое и динамическое давление вентилятора

Группа: Участники форума
Сообщений: 232
Регистрация: 21.9.2010
Из: РФ, С-Пб
Пользователь №: 72968

Хотел уточнить, правильно ли я понимаю.

Допустим мы имеем две аэродинамические характеристики вентилятора (зависимость полного давления вентилятора от расхода воздуха и зависимость статического давления вентилятора от расхода воздуха).

Если вентилятор будет работать на нагнетание, то мы при его подборе пользуемся зависимостью полного давления от расхода.

Если же вентилятор будет работать только на всасывание, то мы пользуемся зависимостью статического давления от расхода, т.к. преобразование динамического давления в полезную работу для перемещения воздуха в воздуховоде невозможно при свободном выбросе из вентилятора.

Группа: Участники форума
Сообщений: 6523
Регистрация: 21.2.2008
Из: Гаага
Пользователь №: 15855

Читайте также:  Как поднять давление в системе отопления частного дома насосом малыш

Группа: Участники форума
Сообщений: 232
Регистрация: 21.9.2010
Из: РФ, С-Пб
Пользователь №: 72968

Группа: Участники форума
Сообщений: 512
Регистрация: 17.3.2008
Из: г. Ухта
Пользователь №: 16591

Хотел уточнить, правильно ли я понимаю.

Допустим мы имеем две аэродинамические характеристики вентилятора (зависимость полного давления вентилятора от расхода воздуха и зависимость статического давления вентилятора от расхода воздуха).

Если вентилятор будет работать на нагнетание, то мы при его подборе пользуемся зависимостью полного давления от расхода.

Если же вентилятор будет работать только на всасывание, то мы пользуемся зависимостью статического давления от расхода, т.к. преобразование динамического давления в полезную работу для перемещения воздуха в воздуховоде невозможно при свободном выбросе из вентилятора.

Группа: Участники форума
Сообщений: 6523
Регистрация: 21.2.2008
Из: Гаага
Пользователь №: 15855

Группа: Участники форума
Сообщений: 232
Регистрация: 21.9.2010
Из: РФ, С-Пб
Пользователь №: 72968

Группа: Участники форума
Сообщений: 512
Регистрация: 17.3.2008
Из: г. Ухта
Пользователь №: 16591

Группа: Участники форума
Сообщений: 44
Регистрация: 6.2.2012
Из: Санкт-Петербург
Пользователь №: 138938

Забавляет тот факт что большинство проектировщиков повально неправильно подбирают вентиляторы, но как то всё работает

Статическое давление вентилятора — это разность (с учётом знака) статического давления до и после вентилятора.
Динамическое давление вентилятора — Это диамическое давление воздуха в сечении напорного патрубка вентилятора (зависит от скорости)
И полное давление — это как водиться сумма предыдущих двух давлений.
Вы не поверете, но есть даже КПД вентилятора по статическому давлению, и КПД по полному давлению

Теперь про сеть —
Потери давления в сети (те что вы расчитываете при аэродинамическом рассчёте) это потери статического давления. Вентилятор должен своим статическим давлением покрыть ваши потери давления.

Если бы в сети было только статическое давление, то это был бы просто сосуд под давлением, без движения воздуха. В воздуховоде должно быть динамическое давление, возникающее в результате движения воздуха. В начальном патрубке сети у вас есть какая то скорость, зная которую, вы знаете динамическое давление в этом патрубке. А прибавив это динамическое давлени к потреям давления (статике) вы получаете полное давление вашей сети. Вентилятор опять таки должен покрыть своим полным давлением полное давление вашей сети.

Вот тут и возникают большинство ошибок.
Например:
Потери давления сети 500 Па.
Вентилятор А
Статическое давление вентилятора при данном расходе 450 Па.
Полное давление 500 Па
Вентилятор Б
Статическое давление вентилятора при данном расходе 500 Па.
Полное давление 550 Па

Какой вентилятор выберете?
Как правильно заметил WasserWolf — вентилятор подобранный по статическому и динамическому давлению может отличаться на несколько типоразмеров. увы.

Кстати WasserWolf ещё одно дельную вещь сказал — вентилятор,работающий только на всасывание подбираетсятолько на статическое давление. Ибо всё динамическое давление вентилятора будет направлено не на полезную работу, а на бесполезное сотрясание воздуха после вентилятора.

Сообщение отредактировал Val_ — 25.5.2012, 15:10

Источник

Adblock
detector