Меню

Вертикальная составляющая силы давления жидкости на криволинейную поверхность равна

Сила давления жидкости на криволинейную стенку.

Силы давления жидкости на поверхности произвольной формы в общем случае определяются, тремя составляющими суммарной силы и тремя моментами.

При действии жидкости на цилиндрические или сферические поверхности, имеющие вертикальную плоскость симметрии, сила давления жидкости сводится к равнодействующей силе, лежащей в плоскости симметрии. Возьмем криволинейную поверхность АВ, образующая которой перпендикулярна к плоскости чертежа (рис.3.12а), определим силу давления жидкости на эту поверхность.

Рис.3.12. Определение сил давления на криволинейную стенку; а) жидкость внутри сосуда; б) жидкость вне сосуда.

Выделим объем жидкости, ограниченный поверхностью АВ, вертикальными плоскостями, проведенными через границы этого участка ВС и AD, свободной поверхностью жидкости. Рассмотрим условия равновесия объема АВСD в вертикальном и горизонтальном направлениях.

Сила давления жидкости F действует на стенку АВ, стенка АВ удерживает действие жидкости силой реакции стенки — R, направленной в противоположную сторону.

Условие равновесия объема АВСD в вертикальном направлении имеет вид

Fв= РSг + G = РSг + ρgVВ, (3.6)

где Р — давление на свободной поверхности жидкости; Sг — площадь горизонтальной проекции поверхности АВ; G — вес выделенного объема жидкостиV, объем VВ называют объемом тела давления. Линия действия Fв проходит через ц.т. объема Vo.

Условие равновесия этого объема в горизонтальном направлении запишем с учетом того, что силы давления жидкости на поверхности ЕD и BC взаимно уравновешиваются и остается лишь сила давления на площадь AЕ т. е. на вертикальную проекцию поверхности Sв. Тогда

Направление горзонтальной силы находится по правилам , соответствующим силе, действующей на плоскую стенку.

Определив по формулам (3.7) и (3.6) вертикальную и горизонтальную составляющие полной силы Рж, найдем

(3.8)

Сила давления жидкости на криволинейную стенку будет равна силе реакции стенки Rж = P и направлена в противоположную сторону.

Когда жидкость расположена снаружи (рис.3.12б), сила гидростатического давления на криволинейную поверхность АВ определяется также, но направление ее будет противоположным.

В условия равновесия, как и в первом случае, входит вес жидкости G в объеме АВСD, хотя этот объем и не заполнен жидкостью.

Положение центра давления на цилиндрической стенке можно найти, если известны площади и и определен центр тяжести выделенного объема АВСD.

Для стенок постоянной кривизны (цилиндрических, сфериче­ских) полная сила давления проходит через центр или ось кри­визны стенки.

При избыточном давлении на смоченной стороне стенки все составляющие и полная сила давления жидкости направлены от жидкости на стенку (изнутри наружу), рис.3.13а.

Читайте также:  Давление скачет резко падает то поднимается

В случае разрежения на смоченной стороне стенки силы на­правлены снаружи внутрь сосуда, рис.3.13б.

При двустороннем воздействии жидкостей на стенку сначала определяются горизонтальные и вертикальные составляющие с каждой стороны стенки в предположении одностороннего воз­действия жидкости, а затем суммарные горизонтальная и верти­кальная составляющие от воздействия обеих жидкостей.

На рис. 3.13 показано определение горизонтальной и верти­кальной составляющих и полной силы давления жидкости на симметричную стенку АВ при избыточном давлении (а) и при разрежении (б) на смоченной стороне стенки.

Объем, построенный на криволинейной поверхности, ограниченный цилиндрической вертикальной поверхностью и сверху пьезометрической плоскостью называется объемом тела давления.

Тело давления в обоих случаях ограничено пьезометрической плоскостью, сила давления в случае избыточного давления направлена наружу, в случае разряжения внутрь сосуда. В ряде задач силу давления на криволинейную стенку удобнее находить по ее составляющим вдоль наклонных осей.

Сила давления жидкости на стенку по любому заданному на­правлению s (рис. 3.14)

где Gs — вес жидкости в объеме Vs, ограниченном стенкой, пье­зометрической плоскостью и проектирующей поверхностью, па­раллельной заданному направлению; α — угол между заданным направлением и вертикалью.

Рис.3.13. Силы давления на криволинейную стенку при действии: а) избыточном давлении в сосуде; б) при вакууме.

Линия действия силы Рs проходит через центр тяжести жидко­сти в объеме Vs.

Рис.3.14 Определение силы давления жидкости по заданному направлению.

В некоторых случаях для нахождения той или иной состав­ляющей силы давления жидкости на стенку следует разбить ее поверхность на отдельные участки, определить соответствующие усилия на каждый участок стенки и далее просуммировать их.

Для определения вертикальной составляющей силы дав­ления жидкости на полусферическую стенку abc следу­ет разделить поверхность полусферы горизонтальной плоскостью на верхнюю ab и нижнюю bc половины и найти вертикальные силы давления жидкости на каждую из них (рис. 3.15).

Рис.3.15 Определение силы давления жидкости на полусферическую стенку разбиением на два объема.

Вертикальная сила на стенку ab равна весу жидкости в объеме аbтп (Рab = ρgVabmn) и направлена вверх; вертикальная сила на стенку равна весу жидкости в объеме сbтп (Рbc = ρgVсbтп) и направлена вниз. Следовательно, вертикальная сила давления на всю полусферу аbс равна разности указанных сил:

т.е. равна весу жидкости в объеме полусферы и направлена вниз.

Читайте также:  Манометр для измерения давления воды и воздуха

Возможным приемом расчета силы давления является рассмотрение равновесия объ­ема жидкости, заключенного между стенкой и плоским сечением, проведенным через ее граничный контур. Например, тре­буется определить силу Р давления жидкости на коническую крышку (рис. 3.16).

Ри.3.16. Определение силы давления жидкости при рассмотрении

равновесия объема жидкости в крышке.

Условие равновесия объема жидкости, заполняющей конус, выражается векторным уравнением

,

где N — сила давления жидкости на выделенный объем, т.е. на плоское се­чение ас (N=ρgHFac ) и проходит по нормали к сечению через центр дав­ления D); G — вес выде­ленного объема жидкости (G = ρgV); R — сила действия конуса на жидкость. Так как искомая сила равна и противоположна силе R, полу­чаем уравнение

,(3.10)

из которого можно определить силу давления Р или любую ее составляющую.

Плавание тел.

Выталкивающая сила является равнодействующей сил давления, с которыми жидкость, находящаяся в покое, действует на тело.

В жидкость погружено тело произвольной формы объемом Wт (рис.3.17).

Рис.3.17 Выталкивающая сила

На свободную поверхность жидкости тело проектируется в виде сечения S, по этой поверхности проведем цилиндрическую поверхность, которая касается поверхности тела по замкнутой кривой АВСD. Эта кривая отделяет верхнюю часть поверхности тела от нижней ее части.

Вертикальная составляющая силы избыточного давления жидкости на верхнюю часть поверхности тела направлена вниз и равна весу жидкости в объеме АFCME.

Вертикальная составляющая силы давления жидкости на нижнюю часть поверхности тела направлена вверх и равна весу жидкости в объеме ANCMF.

Разность между этими силами равна вертикальной равнодействующей сил давления жидкости на тело, будет направлена вверх и равна весу жидкости в объеме жидкости, вытесненной телом.

Закон Архимеда: на тело, погруженное в жидкость, действует выталкивающая сила направленная вертикально вверх, равная весу жидкости вытесненной телом и приложенная в центре тяжести объема погруженной части тела.

Центр тяжести объема погруженной части тела называется центром водоизмещения или центром давления, так как в этой точке приложена равнодействующая сил давления на тело.

Объем жидкости, вытесненный телом, называется объемным водоизмещением.

Выталкивающая сила называется также силой Архимеда.

Вес G тела и архимедова сила могут находиться в следующих соотношениях:

1) G > FА — отрицательная плавучесть, тело тонет;

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Тема 9 Сила давления на криволинейную поверхность

Внутри жидкости расположена криволинейная поверхность w. Координатные оси 0x и 0y расположены в плоскости свободной поверхности жидкости. Ось 0z направлена вертикально вверх.

Читайте также:  Современные подводные лодки опускаются на глубину 400 м вычислите давление

Равнодействующая сил давления на криволинейную поверхность Fкр равна:

где Fсвсила внешнего давления, передаваемая на криволинейную поверхность по закону Паскаля

Fсила давления самой жидкости на криволинейную поверхность.

где pсв – внешнее давление (на свободную поверхность жидкости);

w – площадь смоченной криволинейной поверхности.

Сила давления жидкости на криволинейную поверхность равна (рис. 24):

F = , (9.1)

где – горизонтальные проекции (проекции силы давления жидкости F на горизонтальные оси 0x и 0y);

– вертикальная проекция (проекция силы давления жидкости F на вертикальную ось 0z).

Направление линии действия силы F определяется по направляющим косинусам:

cosa = ; cosb = ; cosg = , (9.2)

где a, b, g – углы наклона силы F к координатным осям.

Горизонтальные и вертикальную составляющие силы F определяют по формулам:

= r × g × hсx × wx; (9.3)

= r × g × hсy × wy; (9.4)

= r × g × V. (9.5)

где wx – проекция криволинейной поверхности w на плоскость, перпендикулярную оси 0x;

wy – проекция криволинейной поверхности w на плоскость, перпендикулярную оси 0y;

hсx – глубина погружения центра тяжести проекции wx под уровень свободной поверхности;

hсy – глубина погружения центра тяжести проекции wy под уровень свободной поверхности;

V – объём тела давления.

Горизонтальные составляющие силы давления на криволинейную поверхность и равны силе давления на вертикальные проекции этой поверхности wx и wy.

Вертикальная проекция равна весу жидкости в объёме тела давления.

Рисунок 24 – Сила давления жидкости на криволинейную поверхность

Тело давления – объём вертикального столба, опирающегося на заданную криволинейную поверхность w и ограниченного плоскостью свободной поверхности или её продолжением.

Тело давления может быть действительным (положительным), если оно заполнено жидкостью. В этом случае тело давления (фигура) и жидкость расположены по одну сторону от криволинейной поверхности. При действительном теле давления вертикальная составляющая направлена вниз (рис. 25, а). Фиктивное (отрицательное) тело давления не заполнено жидкостью. Тело давления (фигура) и жидкость расположены по разные стороны от криволинейной поверхности. Вертикальная составляющая направлена вверх (рис. 25, б).

Рисунок 25 – Тело давления

Горизонтальные составляющие и проходят через центр давления проекций wx и wy , а вертикальная составляющая проходит через центр тяжести тела давления.

Сила давления жидкости на цилиндрическую поверхность (боковая поверхность цилиндра) определяется по формуле:

F =

= 0, так как на плоскость, нормальную оси 0y, цилиндрическая поверхность проектируется в виде линии, то есть wy = 0.

Источник

Adblock
detector