Меню

Вертикальная составляющая силы гидростатического давления

Сила давления жидкости на криволинейную стенку.

Силы давления жидкости на поверхности произвольной формы в общем случае определяются, тремя составляющими суммарной силы и тремя моментами.

При действии жидкости на цилиндрические или сферические поверхности, имеющие вертикальную плоскость симметрии, сила давления жидкости сводится к равнодействующей силе, лежащей в плоскости симметрии. Возьмем криволинейную поверхность АВ, образующая которой перпендикулярна к плоскости чертежа (рис.3.12а), определим силу давления жидкости на эту поверхность.

Рис.3.12. Определение сил давления на криволинейную стенку; а) жидкость внутри сосуда; б) жидкость вне сосуда.

Выделим объем жидкости, ограниченный поверхностью АВ, вертикальными плоскостями, проведенными через границы этого участка ВС и AD, свободной поверхностью жидкости. Рассмотрим условия равновесия объема АВСD в вертикальном и горизонтальном направлениях.

Сила давления жидкости F действует на стенку АВ, стенка АВ удерживает действие жидкости силой реакции стенки — R, направленной в противоположную сторону.

Условие равновесия объема АВСD в вертикальном направлении имеет вид

Fв= РSг + G = РSг + ρgVВ, (3.6)

где Р — давление на свободной поверхности жидкости; Sг — площадь горизонтальной проекции поверхности АВ; G — вес выделенного объема жидкостиV, объем VВ называют объемом тела давления. Линия действия Fв проходит через ц.т. объема Vo.

Условие равновесия этого объема в горизонтальном направлении запишем с учетом того, что силы давления жидкости на поверхности ЕD и BC взаимно уравновешиваются и остается лишь сила давления на площадь AЕ т. е. на вертикальную проекцию поверхности Sв. Тогда

Направление горзонтальной силы находится по правилам , соответствующим силе, действующей на плоскую стенку.

Определив по формулам (3.7) и (3.6) вертикальную и горизонтальную составляющие полной силы Рж, найдем

(3.8)

Сила давления жидкости на криволинейную стенку будет равна силе реакции стенки Rж = P и направлена в противоположную сторону.

Когда жидкость расположена снаружи (рис.3.12б), сила гидростатического давления на криволинейную поверхность АВ определяется также, но направление ее будет противоположным.

В условия равновесия, как и в первом случае, входит вес жидкости G в объеме АВСD, хотя этот объем и не заполнен жидкостью.

Положение центра давления на цилиндрической стенке можно найти, если известны площади и и определен центр тяжести выделенного объема АВСD.

Для стенок постоянной кривизны (цилиндрических, сфериче­ских) полная сила давления проходит через центр или ось кри­визны стенки.

При избыточном давлении на смоченной стороне стенки все составляющие и полная сила давления жидкости направлены от жидкости на стенку (изнутри наружу), рис.3.13а.

В случае разрежения на смоченной стороне стенки силы на­правлены снаружи внутрь сосуда, рис.3.13б.

При двустороннем воздействии жидкостей на стенку сначала определяются горизонтальные и вертикальные составляющие с каждой стороны стенки в предположении одностороннего воз­действия жидкости, а затем суммарные горизонтальная и верти­кальная составляющие от воздействия обеих жидкостей.

На рис. 3.13 показано определение горизонтальной и верти­кальной составляющих и полной силы давления жидкости на симметричную стенку АВ при избыточном давлении (а) и при разрежении (б) на смоченной стороне стенки.

Объем, построенный на криволинейной поверхности, ограниченный цилиндрической вертикальной поверхностью и сверху пьезометрической плоскостью называется объемом тела давления.

Тело давления в обоих случаях ограничено пьезометрической плоскостью, сила давления в случае избыточного давления направлена наружу, в случае разряжения внутрь сосуда. В ряде задач силу давления на криволинейную стенку удобнее находить по ее составляющим вдоль наклонных осей.

Сила давления жидкости на стенку по любому заданному на­правлению s (рис. 3.14)

где Gs — вес жидкости в объеме Vs, ограниченном стенкой, пье­зометрической плоскостью и проектирующей поверхностью, па­раллельной заданному направлению; α — угол между заданным направлением и вертикалью.

Читайте также:  Способы быстрого снижения артериального давления

Рис.3.13. Силы давления на криволинейную стенку при действии: а) избыточном давлении в сосуде; б) при вакууме.

Линия действия силы Рs проходит через центр тяжести жидко­сти в объеме Vs.

Рис.3.14 Определение силы давления жидкости по заданному направлению.

В некоторых случаях для нахождения той или иной состав­ляющей силы давления жидкости на стенку следует разбить ее поверхность на отдельные участки, определить соответствующие усилия на каждый участок стенки и далее просуммировать их.

Для определения вертикальной составляющей силы дав­ления жидкости на полусферическую стенку abc следу­ет разделить поверхность полусферы горизонтальной плоскостью на верхнюю ab и нижнюю bc половины и найти вертикальные силы давления жидкости на каждую из них (рис. 3.15).

Рис.3.15 Определение силы давления жидкости на полусферическую стенку разбиением на два объема.

Вертикальная сила на стенку ab равна весу жидкости в объеме аbтп (Рab = ρgVabmn) и направлена вверх; вертикальная сила на стенку равна весу жидкости в объеме сbтп (Рbc = ρgVсbтп) и направлена вниз. Следовательно, вертикальная сила давления на всю полусферу аbс равна разности указанных сил:

т.е. равна весу жидкости в объеме полусферы и направлена вниз.

Возможным приемом расчета силы давления является рассмотрение равновесия объ­ема жидкости, заключенного между стенкой и плоским сечением, проведенным через ее граничный контур. Например, тре­буется определить силу Р давления жидкости на коническую крышку (рис. 3.16).

Ри.3.16. Определение силы давления жидкости при рассмотрении

равновесия объема жидкости в крышке.

Условие равновесия объема жидкости, заполняющей конус, выражается векторным уравнением

,

где N — сила давления жидкости на выделенный объем, т.е. на плоское се­чение ас (N=ρgHFac ) и проходит по нормали к сечению через центр дав­ления D); G — вес выде­ленного объема жидкости (G = ρgV); R — сила действия конуса на жидкость. Так как искомая сила равна и противоположна силе R, полу­чаем уравнение

,(3.10)

из которого можно определить силу давления Р или любую ее составляющую.

Плавание тел.

Выталкивающая сила является равнодействующей сил давления, с которыми жидкость, находящаяся в покое, действует на тело.

В жидкость погружено тело произвольной формы объемом Wт (рис.3.17).

Рис.3.17 Выталкивающая сила

На свободную поверхность жидкости тело проектируется в виде сечения S, по этой поверхности проведем цилиндрическую поверхность, которая касается поверхности тела по замкнутой кривой АВСD. Эта кривая отделяет верхнюю часть поверхности тела от нижней ее части.

Вертикальная составляющая силы избыточного давления жидкости на верхнюю часть поверхности тела направлена вниз и равна весу жидкости в объеме АFCME.

Вертикальная составляющая силы давления жидкости на нижнюю часть поверхности тела направлена вверх и равна весу жидкости в объеме ANCMF.

Разность между этими силами равна вертикальной равнодействующей сил давления жидкости на тело, будет направлена вверх и равна весу жидкости в объеме жидкости, вытесненной телом.

Закон Архимеда: на тело, погруженное в жидкость, действует выталкивающая сила направленная вертикально вверх, равная весу жидкости вытесненной телом и приложенная в центре тяжести объема погруженной части тела.

Центр тяжести объема погруженной части тела называется центром водоизмещения или центром давления, так как в этой точке приложена равнодействующая сил давления на тело.

Объем жидкости, вытесненный телом, называется объемным водоизмещением.

Выталкивающая сила называется также силой Архимеда.

Вес G тела и архимедова сила могут находиться в следующих соотношениях:

Читайте также:  Может при месячных быть давление и трясти

1) G > FА — отрицательная плавучесть, тело тонет;

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник

Гидростатическое давление: формула и свойства.

Гидростатическое давление – это давление, производимое на жидкость силой тяжести.

Гидростатикой называется раздел гидравлики, в котором изучаются законы равновесия жидкостей и рассматривается практическое приложение этих законов.

Для того, чтобы понять гидростатику необходимо определиться в некоторых понятиях и определениях.

Содержание статьи

Закон Паскаля для гидростатики.

В 1653 году французским ученым Б. Паскалем был открыт закон, который принято называть основным законом гидростатики.

Давление на поверхность жидкости, произведенное внешними силами, передается в жидкости одинаково во всех направлениях.

Закон Паскаля легко понимается если взглянуть на молекулярное строение вещества. В жидкостях и газах молекулы обладают относительной свободой, они способны перемещаться друг относительно друга, в отличии от твердых тел. В твердых телах молекулы собраны в кристаллические решетки.

Относительная свобода, которой обладают молекулы жидкостей и газов, позволяет передавать давление производимое на жидкость или газ не только в направлении действия силы, но и во всех других направлениях.

Закон Паскаля для гидростатики нашел широкое распространение в промышленности. На этом законе основана работа гидроавтоматики, управляющей станками с ЧПУ, автомобилями и самолетами и многих других гидравлических машин.

Определение и формула гидростатического давления

Из описанного выше закона Паскаля вытекает, что:

Величина гидростатического давления не зависит от формы сосуда, в котором находится жидкость и определяется произведением

ρ – плотность жидкости

g – ускорение свободного падения

h – глубина, на которой определяется давление.

Для иллюстрации этой формулы посмотрим на 3 сосуда разной формы.

Во всех трёх случаях давление жидкости на дно сосуда одинаково.

Полное давление жидкости в сосуде равно

P0 – давление на поверхности жидкости. В большинстве случаев принимается равным атмосферному.

Сила гидростатического давления

Выделим в жидкости, находящейся в равновесии, некоторый объем, затем рассечем его произвольной плоскостью АВ на две части и мысленно отбросим одну из этих частей, например верхнюю. При этом мы должны приложить к плоскости АВ силы, действие которых будет эквивалентно действию отброшенной верхней части объема на оставшуюся нижнюю его часть.

Рассмотрим в плоскости сечения АВ замкнутый контур площадью ΔF, включающий в себя некоторую произвольную точку a. Пусть на эту площадь воздействует сила ΔP.

Тогда гидростатическое давление формула которого выглядит как

представлет собой силу, действующую на единицу площади, будет называться средним гидростатическим давлением или средним напряжением гидростатического давления по площади ΔF.

Истинное давление в разных точках этой площади может быть разным: в одних точках оно может быть больше, в других – меньше среднего гидростатического давления. Очевидно, что в общем случае среднее давление Рср будет тем меньше отличаться от истинного давления в точке а, чем меньше будет площадь ΔF, и в пределе среднее давление совпадет с истинным давлением в точке а.

Для жидкостей, находящихся в равновесии, гидростатическое давление жидкости аналогично напряжению сжатия в твердых телах.

Единицей измерения давления в системе СИ является ньютон на квадратный метр (Н/м 2 ) – её называют паскалем (Па). Поскольку величина паскаля очень мала, часто применяют укрупненные единицы:

килоньютон на квадратный метр – 1кН/м 2 = 1*10 3 Н/м 2

меганьютон на квадратный метр – 1МН/м 2 = 1*10 6 Н/м 2

Давление равное 1*10 5 Н/м 2 называется баром (бар).

В физической системе единицей намерения давления является дина на квадратный сантиметр (дина/м 2 ), в технической системе – килограмм-сила на квадратный метр (кгс/м 2 ). Практически давление жидкости обычно измеряют в кгс/см 2 , а давление равное 1 кгс/см 2 называется технической атмосферой (ат).

Читайте также:  Межпоселковый газопровод среднего давления

Между всеми этими единицами существует следующее соотношение:

1ат = 1 кгс/см 2 = 0,98 бар = 0,98 * 10 5 Па = 0,98 * 10 6 дин = 10 4 кгс/м 2

Следует помнить что между технической атмосферой (ат) и атмосферой физической (Ат) существует разница. 1 Ат = 1,033 кгс/см 2 и представляет собой нормальное давление на уровне моря. Атмосферное давление зависит от высоты расположения места над уровнем моря.

Измерение гидростатического давления

На практике применяют различные способы учета величины гидростатического давления. Если при определении гидростатического давления принимается во внимание и атмосферное давление, действующее на свободную поверхность жидкости, его называют полным или абсолютным. В этом случае величина давления обычно измеряется в технических атмосферах, называемых абсолютными (ата).

Часто при учете давления атмосферное давление на свободной поверхности не принимают во внимание, определяя так называемое избыточное гидростатическое давление, или манометрическое давление, т.е. давление сверх атмосферного.

Манометрическое давление определяют как разность между абсолютным давлением в жидкости и давлением атмосферным.

и измеряют также в технических атмосферах, называемых в этом случае избыточными.

Случается, что гидростатическое давление в жидкости оказывается меньше атмосферного. В этом случае говорят, что в жидкости имеется вакуум. Величина вакуума равняется разнице между атмосферным и и абсолютным давлением в жидкости

и измеряется в пределах от нуля до атмосферы.

Свойства гидростатического давления

Гидростатическое давление воды обладает двумя основными свойствами:
Оно направлено по внутренней нормали к площади, на которую действует;
Величина давления в данной точке не зависит от направления (т.е. от ориентированности в пространстве площадки, на которой находится точка).

Первое свойство является простым следствием того положения, что в покоящейся жидкости отсутствуют касательные и растягивающие усилия.

Предположим, что гидростатическое давление направлено не по нормали, т.е. не перпендикулярно, а под некоторым углом к площадке. Тогда его можно разложить на две составляющие – нормальную и касательную. Наличие касательной составляющей из-за отсутствия в покоящейся жидкости сил сопротивления сдвигающим усилиям неизбежно привело бы к движению жидкости вдоль площадки, т.е. нарушило бы её равновесие.

Поэтому единственным возможным направлением гидростатического давления является его направление по нормали к площадке.

Если предположить что гидростатическое давление направлено не по внутренней, а по внешней нормали, т.е. не внутрь рассматриваемого объекта а наружу от него, то вследствие того, что жидкость не оказывает сопротивления растягивающим усилиям – частицы жидкости пришли бы в движение и её равновесие было бы нарушено.

Следовательно, гидростатическое давление воды всегда направлено по внутренней нормали и представляет собой сжимающее давление.

Из этого же правило следует, что если измениться давление в какой-то точке, то на такую же величину измениться давление в любой другой точке этой жидкости. В этом заключается закон Паскаля, который формулируется следующим образом: Давление производимое на жидкость, передается внутри жидкости во все стороны с одинаковой силой.

На применение этого закона основываются действие машин, работающих под гидростатическим давлением.

Ещё одним фактором влияющим на величину давления является вязкость жидкости, которой до недавнего времени приято было пренебрегать. С появлением агрегатов работающих на высоком давлении вязкость пришлось так же учитывать. Оказалось, что при изменении давления, вязкость некоторых жидкостей, таких как масла, может изменяться в несколько раз. А это уже определяет возможность использовать такие жидкости в качестве рабочей среды.

Источник

Adblock
detector