Меню

Вертикальное давление грунта боковое давление грунта

7.2. ОПРЕДЕЛЕНИЕ АКТИВНОГО И ПАССИВНОГО ДАВЛЕНИЯ ГРУНТА НА СТЕНЫ

7.2.1. Общие положения

Давление грунта на стены зависит от их конструктивных особенностей (наклона и жесткости стены, наличия разгружающих элементов и т.д.), от свойств грунта, взаимодействующего со стеной, от величины и направления перемещений, поворота и прогиба стены [2].

Активное давление грунта σa реализуется при смещении стены от грунта и соответствует минимальному значению давления. Пассивное давление грунта σр реализуется при смещении стены на грунт и соответствует максимальному значению давления. При отсутствии перемещений стены реализуется давление покоя σ . Изменение давления грунта в зависимости от перемещения стены и представлено на рис. 7.6.

7.2.2. Характеристики грунта, используемые при определении давления грунта

На стенки действует боковое давление грунта нарушенного сложения. Характеристики этого грунта выражаются через соответствующие характеристики грунта ненарушенного сложения следующими соотношениями [3]:

где γI, φI, cI, γII, φII, cII — соответственно удельный вес, угол внутреннего трения и удельное сцепление грунтов ненарушенного сложения для расчетов по первой и второй группам предельных состояний, определяемые в соответствии со СНиП 2.02.01-83.

7.2.3. Активное давление грунта

А. НЕСВЯЗНЫЙ ГРУНТ

В случае свободной от нагрузки наклонной поверхности засыпки и наклонной тыловой грани стены горизонтальная σah и вертикальная σav составляющие активного давления грунта на глубине z (рис. 7.7) определяются по формулам [3, 4]:

где γ — расчетное значение удельного веса грунта; α — угол наклона тыловой грани стены к вертикали, принимаемый со знаком плюс при отклонении от вертикали в сторону стены; δ — угол трения грунта на контакте со стенкой, принимаемый для стен с повышенной шероховатостью равным φ , для мелкозернистых водонасыщенных песков и при наличии на поверхности вибрационных нагрузок равным 0, в остальных случаях равным 0,5 φ (здесь φ — расчетное значение угла внутреннего трения грунта); λa — коэффициент активного давления грунта:

здесь ρ — угол наклона поверхности грунта к горизонту, принимаемый со знаком плюс при отклонении этой поверхности от горизонтали вверх: |ρ| ≤ φ .

В частном случае для гладкой вертикальной тыловой грани и горизонтальной поверхности грунта коэффициент активного давления вычисляется по формуле

Равнодействующие горизонтального Еah и вертикального Eav давлений грунта для стен высотой Н определяются как площади соответствующих треугольных эпюр давлений (рис. 7.7) по формулам:

Б. СВЯЗНЫЙ ГРУНТ

Горизонтальная σ’ah и вертикальная σ’av составляющие активного давления связного грунта на глубине z (см. рис. 7.7) определяются по формулам:

где σch — давление связности:

здесь с — удельное сцепление грунта;

Если значение K , вычисленное по формуле (7.10), меньше нуля, в расчетах принимается K = 0.

В частном случае при горизонтальной поверхности засыпки ( ρ = 0) и вертикальной задней грани ( α = 0) (или расчетной плоскости) горизонтальная составляющая активного давления грунта на глубине z определяется по формуле

Равнодействующая горизонтального Еah и вертикального Eav давлений грунта для стен высотой Н (см. рис. 7.7) определяется по формулам;

В. ДАВЛЕНИЕ НА СТЕНЫ ОТ НАГРУЗКИ НА ПОВЕРХНОСТИ ЗАСЫПКИ

Сплошная равномерно распределенная нагрузка q (рис. 7.8, а). Горизонтальная σqh и вертикальная σqv составляющие активного давления грунта от этой нагрузки на глубине z для связных и несвязных грунтов определяются по формулам:

Сплошная (на всей призме обрушения) равномерно распределенная нагрузка q , приложенная на расстоянии а от стены (рис. 7.8, б). Горизонтальная σqh и вертикальная σqv , составляющие активного давления грунта от этой нагрузки определяются при za/(tgα + tgΘ) по формулам (7.14) и (7.15), а при 0 ≤ za/(tgα + tgΘ) (где Θ = 45° – φ /2) σqh = σqv = 0.

Полосовая (ширина полосы b ) нагрузка q , приложенная в пределах призмы обрушения на расстоянии а от стены (рис. 7.8, в). Горизонтальная σqh и вертикальная σqv составляющие активного давления грунта от этой нагрузки определяются при a/(tgα + tgΘ) ≤ z ≤ (a + b)/(tgα + tgΘ) по формулам (7.14) и (7.15), а при 0 ≤ za/(tgα + tgΘ) и z > (a + б)/(tgα + tgΘ), σqh = σqv = 0.

Читайте также:  Какие таблетки можно пить беременным при повышенном давлении

При расчете подпорных стен давления от нагрузок на поверхности засыпки, вычисленные по формулам (7.14) и (7.15), добавляются к давлениям от грунта, вычисленным по формулам (7.1), (7.2) и (7.7), (7.8).

Г. ДАВЛЕНИЕ ГРУНТА НА УГОЛКОВЫЕ ПОДПОРНЫЕ СТЕНЫ

Для уголковых подпорных стен активное давление грунта на условную поверхность определяется по двум возможным вариантам:

  • – для длинной опорной плиты в предположении образования симметричной призмы обрушения (рис. 7.9, а, условная поверхность ab );
  • – для короткой опорной плиты — несимметричной призмы обрушения (рис. 7.9, б, условная поверхность abc ).

В обоих случаях вес грунта, заключенного между условной поверхностью и тыловой поверхностью стены, добавляется к весу стены в расчетах на устойчивость, которые выполняются так же, как и для массивных стен: α = Θ = 45°— φ /2; δ = φ .

7.2.4. Пассивное давление грунта

При горизонтальной поверхности грунта и равномерно распределенной нагрузке на поверхности горизонтальная σph и вертикальная σpv составляющие пассивного давления на глубине z от поверхности определяются по формулам:

где q — нагрузка, равномерно распределенная на поверхности; λph — коэффициент горизонтальной составляющей пассивного давления, определяемый при горизонтальной поверхности грунта по формуле

Источник

Давление грунтов на подземные сооружения

Напряженное состояние грунтов до и после проведения выработки

До проведения выработки и до возведения подземного сооружения грунт в неограниченном массиве находится в состоянии естественного или геостатического равновесия при действий собственного веса. При этом на глубине Z в массиве грунта (рис. 1) действуют следующие сжимающие напряжения (давления):

вертикальные

горизонтальные

где — средний объемный вес вышележащих грунтов; — коэффициент бокового давления грунта в условиях естественного залегания.

Проведение открытой или подземной выработки изменяет условия равновесия массива грунта и приводит к возникновению в нем деформаций и к перераспределению напряжений.

Давление грунта на подземные сооружения оказывается иным, чем давление в нетронутом массиве на той же глубине, так как:

во-первых, сооружения обладает другой жесткостью, чем грунт,

во-вторых, перемещения грунта успевают произойти в период времени между разработкой грунта и возведением сооружения, наконец,

в-третьих, между сооружением и массивов остаются зазоры, допускающие некоторые перемещения грунта.

Давление, оказываемое грунтом на сооружение, зависит от глубины заложения и жесткости последнего; влажности и степени уплотнения грунта над сооружением и особенно рядом с ним и от способа возведения сооружения Следует различать три основных случая возведения сооружения;

— сооружение в насыпи (рис. 2, а), возведенное или уложенное непосредственно на поверхности земли или в очень небольшом по сравнению с шириной выемки углублении с последующей засыпкой; так обычно сооружаются водопропускные трубы под дорожными насыпями;

— сооружение в выемке или траншее (рис 2 б), когда оно возводится или укладывается в открытой выработке, имеющей небольшую по сравнению с глубиной ширину и ограниченной более или менее твердыми стенками; пространство рядом с сооружением и над ним заполняется грунтом; так обычно укладываются трубопроводы водоснабжения, канализационные коллекторы, водостоки и др ;

— сооружение, возведенное закрытым способом (рис 2 в), при котором массив грунта не нарушается с поверхности, этот способ применяется при строительства туннелей и при бестраншейной прокладке трубопроводов.

Давление грунта на подземное сооружение не остается постоянным, а меняется вследствие изменения температурно-влажностных условий и ползучести грунта, В большинстве случаев давление на сооружение постепенно нарастает с течением времени, достигая наибольшей величины через некоторый промежуток времени, с последующим иногда уменьшением.

Для определения давления на подземные сооружения от грунта последний рассматривают либо в качестве упругой, либо в качестве сыпучей среды.

Первая расчетная модель применима в тех случаях, когда напряжения в массиве грунта после проведения выработки значительно меньше разрушающих. Если же в наиболее напряженных областях грунта наступает разрушающее, то примерная расчетная модель сыпучей среды, находящейся в состоянии предельного равновесия.

Давление на подземное сооружение, расположенное ниже уровня свободной подземной воды, определяют как совместное давление грунта во взвешенном состоянии и воды. При этом для расчета берется наивыгоднейший уровень подземной воды.
Давление на подземное сооружение неустойчивых водонасыщенных грунтов (плывунов) принимается по гидростатическому закону.

Читайте также:  Чем меньше диаметр трубы тем больше давление

При расчете подземных сооружении по первому предельному состоянию нормативные нагрузки умножаются на коэффициенты перегрузки n, принимаемые по табл:

При этом значения коэффициентов перегрузки, меньшие единицы, относятся к случаям, когда данная нагрузка уменьшает расчетное суммарное воздействие.

При расчете подземных сооружений с учетом дополнительных или особых сочетании величины расчетных временных нагрузок принимаются с коэффициентами 0,9 и 0,8 соответственно.

Источник

Определение давления грунта

В.1. Нормативные и расчетные значения характеристик грунтов ненарушенного сложения (угол внутреннего трения j, удельное сцепление c, модуль деформации E) следует определять по СП 22.13330.

В.2. Удельный вес грунта g необходимо определять по данным непосредственных испытаний грунтов. Нормативное значение удельного веса грунта с учетом взвешивающего действия воды

(В.1)

где , — удельный вес соответственно скелета грунта и воды;

е — коэффициент пористости грунта.

При отсутствии опытных данных и для типового проектирования допускается принимать нормативные значения g n = 18 кН/м 3 (1,8 тс/м 3 ); 0123A10B1DE05946

; 0123A10B1DE05946

.

В.3. Значения характеристик грунтов засыпки (g’, j’ и с‘), уплотненных в соответствии с СП 45.13330 с коэффициентом уплотнения ky не менее 0,95 (что должно быть указано в проекте), допускается устанавливать по характеристикам тех же грунтов ненарушенного сложения:

(В.2)

В.4. Активное горизонтальное давление грунта ph(sа.г) и вертикальное pv(sa.в) на глубине y, а также пассивное давление грунта phr(sп.г) и pvr(sп.в) следует определять по СП 101.13330.

Полное горизонтальное давление грунта слагается из давления от собственного веса грунта phg, давления от временной нагрузки на поверхности phq и отрицательного давления от сцепления p.

Эпюры возможного сочетания этих нагрузок приведены на рисунке В.1.

Если значение ph оказывается меньше нуля (рисунок В.1, г), то на этом участке принимается ph = 0. При этом следует давление на глубине h сохранить равным ph, а вершину суммарной треугольной эпюры давления грунта из точки а перенести в точку а1на поверхности (рисунок В.1, д).

Горизонтальное давление грунта на глубине у

(В.5)

где q — равномерно распределенная нагрузка на поверхности, примыкающей к стене.

В.7. Дополнительное горизонтальное давление, обусловленное наличием грунтовых вод, следует определять по формуле

(В.6)

где hw высота от низа сооружения до расчетного уровня грунтовых вод, м;

g — удельный вес грунта;

В.8. При наличии на поверхности грунта в пределах призмы обрушения полосовой равномерно распределенной нагрузки q на ширине b давление от нее следует распределять в стороны под углами θ к вертикали (рисунок В.2) до пересечения с а плоскостью подпорной стены на глубине и принимать равномерно распределенным на ширине bv = b + 2a, непосредственно примыкающей к стене.

Интенсивность вертикального давления от полосовой нагрузки следует определять по формуле

интенсивность горизонтального давления от полосовой нагрузки — по формуле

Рисунок В.2 — Схема распределения давления от полосовой нагрузки

В.9. Временные нагрузки от подвижного транспорта следует принимать в соответствии с СП 35.13330 в виде нагрузки СК — от подвижного состава железных дорог, АК — от автотранспортных средств, НК-80 — от колесной нагрузки, НГ-60 — от гусеничной нагрузки.

Примечание — СК — условная эквивалентная равномерно распределенная нормативная нагрузка от подвижного состава железных дорог на 1 м пути (рисунок В.3). АК — нормативная нагрузка от автотранспортных средств в виде двух полос. НК-80 — нормативная нагрузка, состоящая из одиночной машины на колесном ходу весом 785 кН (80 тс). НГ-60 — нормативная нагрузка, состоящая из одиночной машины на гусеничном ходу весом 583 кН (60 тс).

Рисунок В.3 Схема распределения давления от подвижного состава железных дорог

В.10. Нормативную эквивалентную нагрузку СК на уровне низа шпал от подвижного состава железных дорог следует принимать в виде сплошной полосы шириной 2,7 м интенсивностью , равной:

(В.9)

где С — коэффициент (для расчета подземных конструкций следует принимать равным 1,5);

К — класс нагрузки, равный 137 кН (14 тс) на 1 м пути. При соответствующем обосновании допускается снижение этой нагрузки до величины К = 98 кН (10 тс) на 1 м пути.

В.11. При расположении железнодорожного пути вдоль сооружения давление от него приводится к эквивалентной нормативной нагрузке на площадке, расположенной на глубине от низа шпалы (см. рисунок В.3) шириной

Читайте также:  Почему при высоком давлении слезятся глаза

by1 = 2,7 + 2a. Интенсивность вертикального давления следует определять по формуле

(B.10)

где — то же, что в формуле (В.9).

Интенсивность горизонтального давления ph1 следует определять по формуле (В.8).

В.12. При расположении железнодорожного пути поперек сооружения интенсивность нормативного вертикального давления на горизонтальную плоскость на глубине y, м, следует определять по формуле

(В.11)

Интенсивность нормативного горизонтального давления ph2 — по формуле (В.8).

В.13. Нагрузка от автотранспортных средств состоит из двух полос АК (рисунок В.4), каждая из которых включает одну двухосную тележку с осевой нагрузкой Р, равной 9,81К, кН (1К, тс), и равномерно распределенную нагрузку интенсивностью v на обе колеи v = 0,98К, кН/м (0,1К, тс/м).

Для сооружений на основных магистральных дорогах нагрузку следует принимать полосовую класса К-11 или от одиночной машины НК-80.

Для сооружений на внутрихозяйственных дорогах нагрузку следует принимать полосовую класса К-8 или от одиночной гусеничной машины НГ-60. Кроме того, элементы проезжей части мостов следует проверять на давление одиночной оси, равное 108 кН (11 тс).

Рисунок В.4 — Схема давления от автомобильной нагрузки АК при движении ее вдоль сооружения

В.14. Нагрузка от тележки Р = К (см. рисунок В.4) распределяется вдоль движения на длину ау3= 1,7 + 2а (м) и на ширину bу2 = 2,5 + 2а (м).

Интенсивность вертикального давления

(12)

Вертикальная равномерно распределенная нагрузка v распределяется на ширину by4 = by3.

Интенсивность вертикального давления на глубине уа, от нагрузки v

(В.13)

Полная нагрузка АК образуется сложением нагрузок

Для получения расчетных нагрузок нагрузки и вводятся в расчет со своими коэффициентами надежности по нагрузке.

Интенсивность горизонтальных давлений ph3 и ph4 определяется по формуле (В.8).

В.15. Интенсивность нормативного вертикального давления от колесной нагрузки НК-80 при движении ее вдоль сооружения (рисунок В.5) на глубине при ay5 = 3,8 + 2а (м) и by5 = 3,5 + 2а (м) следует определять по формуле

(В.14)

Интенсивность горизонтального давления следует определять по формуле (В.8).

Рисунок В.5 — Схема давления от колесной нагрузки НК-80 при движении ее вдоль сооружения

В.16. Интенсивность нормативного вертикального давления от гусеничной а нагрузки НГ-60 при движении ее вдоль сооружения (рисунок В.6) на глубине при ay6 = 5,0 + 2а (м) и by6 = 3,2 + 2а (м) следует определять по формуле

(В.15)

Рисунок В.6 — Схема давления от гусеничной нагрузки НГ-60 при движении ее вдоль сооружения

В.17. При движении автотранспорта поперек сооружения интенсивность нормативного вертикального давления от автомобильной нагрузки АК (рисунок В.7) на глубине y ³ 0,6 м следует определять по формуле

(В.16)

Интенсивность нормативного вертикального давления от колесной нагрузки НК-80 на глубине y ³ 0,8 м следует определять по формуле

(В.17)

Интенсивность нормативного вертикального давления от гусеничной нагрузки НГ-60 на глубине y ³ 0,8 м следует определять по формуле

(В.18)

Горизонтальное давление ph6 — 9 следует определять по формуле (В.8).

Рисунок В.7 — Схема давления от нагрузок АК, НК-80 и НГ-60 при движении их поперек сооружения

В.18. При отсутствии конкретных нагрузок на поверхности земли следует принимать условную нормативную равномерно распределенную сплошную нагрузку интенсивностью 9,81 кПа (1 тс/м 2 ).

В.19. Вертикальное давление от автотранспорта на перекрытие при заглублении его менее чем на 0,6 м следует определять с учетом давления от каждого колеса с распределением в пределах толщи грунтовой засыпки под углом 30° к вертикали, а в пределах дорожного покрытия или пола цеха — под углом 45°.

В.20. При расчете сооружений по предельным состояниям первой группы коэффициенты надежности по нагрузке следует принимать:

от собственного веса конструкции, давления грунта, оборудования, складируемого материала, погрузчиков и каров, равномерно распределенной нагрузки на территории — по СП 20.13330;

от подвижного состава железных дорог, колонн автомобилей, колесной и гусеничной нагрузок, дорожного покрытия проезжей части и тротуаров, веса полотна железнодорожных путей — по СП 35.13330.

Коэффициенты надежности по нагрузке при расчете по предельным состояниям второй группы следует принимать равными 1.

Приложение Г
(обязательное)

Источник

Adblock
detector