Меню

Влияние температуры и давления на вязкость жидкости

Вязкость жидкости

Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.

Содержание статьи

Физический смысл вязкости

Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1

Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.

Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.

Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде

где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения

μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.

Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.

Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу

Вязкость кинематическая, динамическая и абсолютная

Теперь определимся с различными понятиям вязкости:

Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.

Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.

Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.

Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести

Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.

Коэффициент вязкости жидкости

В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости

где ρ – плотность жидкости.

Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.

Читайте также:  Настрой сытина на стабильность артериального давления видео

В физической системе единиц кинематическая вязкость имеет единицу измерения см 2 /с и называется Стоксом(Ст).

Вязкость некоторых жидкостей

Жидкость t, °С ν, Ст
Вода 0,0178
Вода 20 0,0101
Вода 100 0,0028
Бензин 18 0,0065
Спирт винный 18 0,0133
Керосин 18 0,0250
Глицерин 20 8,7
Ртуть 0,00125

Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью

Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.

Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.

Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.

Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.

Методы измерения вязкости. Метод Стокса.

Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.

Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.

Существует следующие методы определения вязкости жидкости.

Капиллярный метод.

Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.

Метод по Гессе.

Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.

Ротационный метод.

Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.

Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.

Метод Стокса

Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.

Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.

Видео по теме вязкости

Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.

Читайте также:  Высокое давление во время кесарева сечения

Источник

Влияние температуры на вязкость

Вязкость веществ существенно зависит от температуры. С ростом температуры вязкость газов увеличивается, а вязкость жидкостей уменьшается. Это объясняется тем, что кинетическая энергия каждой молекулы жидкости возрастает быстрее, чем потенциальная энергия взаимодействия между ними. Поэтому все смазки всегда стараются охладить, иначе это грозит простой утечкой через узлы.

Сила вязкого трения

Явление внутреннего трения с макроскопической точки зрения связано с возникновением сил трения между слоями газа или жидкости, перемещающимися параллельно друг другу с различными по величине скоростями. На движущийся слой действует ускоряющая сила. Наоборот, медленно перемещающийся слой тормозит более быстро движущиеся слой газа (жидкости). Силы трения, которые при этом возникают, направлены по касательной к поверхности соприкосновения слоев.

Причиной вязкости является наличие градиента1 скорости ΔU/Δn между движущимися слоями жидкости (газа); при этом между слоями осуществляется перенос импульса.

Рассмотрим известный опыт Ньютона. Пусть имеются две параллельные пластинки (рис. 1), между которыми находится газ (жидкость).

Рис. 1

Расстояние между пластинками h. Нижнюю пластинку будем удерживать неподвижно, верхнюю заставим двигаться в одном и том же направлении в своей плоскости с постоянной скоростью u.

Слой газа, непосредственно прилегающий к верхней пластинке, будет иметь ту же скорость u, что и пластинка, слой же газа, прилегающий к нижней пластинке, находится в покое. Как показывает опыт, любой промежуточный слой движется со скоростью u, пропорциональной расстоянию x от неподвижной пластинки, т. е.

(1)

Постоянная a определяется из условия, что при x=h u=u, т. е. u = ah. Откуда a = u/h. Тогда выражение (1) примет вид:

(2)

Таким образом, к верхней пластинке приложена сила F1, лежащая в ее плоскости и имеющая то же направление, что и направление движения пластинки. Так как пластинка движется с постоянной скоростью u, то на пластинку должна действовать такая же по величине, но противоположно направленная сила F со стороны газа, которую назовем силой вязкого трения.

Из опыта следует, что абсолютная величина силы F1 пропорциональна скорости u, с которой мы двигаем пластинку, и площади пластины, т. е.

где η – постоянный коэффициент пропорциональности, который называют коэффициентом вязкого трения. Учитывая, что сила вязкого трения F = – F1, равенство (3) перепишем в виде:

(4)

Так как из (2) следует, что , то последнее выражение можно представить так:

(5)

Это закон внутреннего вязкого трения Ньютона, который установил его экспериментально. Закон утверждает: при стационарном (ламинарном) движении слоев жидкости или газа с различными скоростями между ними возникают касательные силы, пропорциональные градиенту скорости слоев и площади их соприкосновения.

Физический смысл коэффициента вязкости h заключается в том, что он численно равен силе, действующей на единицу площади поверхности, параллельной скорости течения газа или жидкости, при градиенте скорости .

Согласно второму закону Ньютона, F = dp / dt, где p – импульс элементарной массы слоя газа. Поэтому (5) можно представить в виде бесконечно малых:

Читайте также:  Водяные насосы для квартиры высокого давления

(6)

Пусть изменение скорости движения газа или жидкости происходит в направлении оси X, а сама скорость течения направлена перпендикулярно этой оси (рис. 2).

Рис. 2

Тогда закон Ньютона (6) утверждает: импульс, переносимый за время dt через площадку dS, перпендикулярной оси X, пропорционален времени dt, величине площадки dS и градиенту скорости .

Внутреннее трение жидкостей, как и газов, возникает при движении жидкости вследствие переноса импульса в направлении, перпендикулярном к направлению движения. Общий закон внутреннего трения — закон Ньютона:

,

где: S – площадь соприкосновения движущихся слоев жидкости, м 2 ;

знак « – » указывает, что сила F направлена против скорости u.

Характеристиками вязкости являются: динамический коэффициент вязкости η и кинематический коэффициент вязкости ν.

hдинамическая вязкость, или коэффициент внутреннего трения жидкости (Па•с)), равный силе, действующей на единицу поверхности слоя при градиенте скорости, равном единице, т.е. когда скорость слоя, отстоящего на единицу длины от данного, отличается от скорости последнего на единицу скорости. Он количественно характеризует сопротивление жидкости (газа) смещению её слоёв. Величина, обратная, φ = 1 /η называется текучестью.

Переход вещества из жидкого состояния в стеклообразное обычно связывают с достижением вязкости порядка 10 11 − 10 12 Па·с.

В технике, в частности, при расчёте гидроприводов и в триботехнике2, часто приходится иметь дело с величиной:

м 2 c.

Эта величина получила название кинематической вязкости.

Здесь — плотность жидкости; — динамическая вязкость.

Качественное отличие сил вязкого трения от сухого трения заключается в том, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение (т. е. для вязкого трения не существует трения покоя). Наоборот, под действием только вязкого трения тело, вначале двигавшееся, никогда полностью не остановится, хотя движение и будет бесконечно замедляться.

Вязкость газов

В кинетической теории газов коэффициент внутреннего трения вычисляется по формуле

,

где – средняя скорость теплового движения молекул, − средняя длина свободного пробега. Из этого выражения в частности следует, что вязкость не очень разреженных газов практически не зависит от давления, поскольку плотность ρ прямо пропорциональна давлению, а – обратно пропорциональна. Такой же вывод следует и для других кинетических коэффициентов для газов, например, для коэффициента теплопроводности. Однако этот вывод справедлив только до тех пор, пока разрежение газа не становится столь малым, что отношение длины свободного пробега к линейным размерам сосуда (число Кнудсена) не становится по порядку величины равным единице; в частности, это имеет место в сосудах Дьюара (термосах).

С повышением температуры вязкость большинства газов увеличивается, это объясняется увеличением средней скорости молекул газа , растущей с температурой как .

Расплавленные металлы имеют вязкость η того же порядка, что и обычные жидкости. Особыми вязкостными свойствами обладает жидкий гелий. При температуре 2,172 К он переходит в сверхтекучее состояние, в котором вязкость η = 0. (см. Гелий. Сверхтекучесть).

Источник

Adblock
detector