Меню

Внутреннее избыточное давление в резервуаре что это

Давление в резервуаре

Одной из важнейших эксплуатационных характеристик является давление в резервуаре. Оно должно распределяться равномерно для обеспечения нормального функционирования нефтехранилища. Строго говоря, это требуется и в резервуарах для воды или других жидкостей. Но оборудование нефтеперерабатывающей промышленности имеет свои особенности.

Основные теоретические моменты

Следует отметить, что такой показатель как давление в закрытом резервуаре должен быть рассчитан при проектировании емкости. Для этого используются различные методы расчета. Однако в целом они должны соответствовать требованиям технической документации и строительных нормативов. Ведь от того, насколько правильно будет рассчитано давление, зависит безопасность эксплуатации конструкции в целом. Проектирование обычно осуществляется с помощью программных комплексов. Такие работы могут проводить только квалифицированные специалисты проектной организации. Основным показателем, который используется в таких расчетах, является гидростатическое давление жидкости. Если в процессе эксплуатации давление превысит этот показатель, может быть нарушена целостность конструкции в целом, а также может возникнуть неравномерная осадка, что также приведет к разрушению конструкции.

Резервуары высокого давления

В нефтяной промышленности используются резервуары повышенного давления, которые представляют собой цилиндрические емкости вертикального расположения с показателем внутреннего давления выше 200 мм вод.ст. На такие емкости распространяются повышенные правила к технике безопасности. К такой категории относится, например, каплевидный резервуар – он отличается характерной формой, которая обладает определенными эксплуатационными особенностями. Рабочее давление в резервуаре такого типа не превышает 0,4 кгс/кв.см, то есть в пересчете на вакуум, это 500 мм вод.ст. Кроме обычных каплевидных резервуаров, могут использоваться многоторовые емкости. Такие конструкции требуют устройства плотно утрамбованной песчаной подушки. Нижняя часть оболочки такой емкости должна опираться на кольцевую плиту. Жесткость такой оболочке придает внутренний каркас особой конструкции.

Существуют резервуары повышенного давления и цилиндрической формы. Они имеют плоское днище. А их кровля делается торосферической. Вместимость таких резервуаров составляет около 5000 кубометров. Внутреннее давление может доходить до 2500 мм вод.ст. В резервуарах высокого давления замеры показателей осуществляются только с помощью специальных приборов. Не допускается нарушение герметичности таких конструкций. Поэтому открытие люка для замеров запрещается.

Резервуары низкого давления

Такие емкости служат не только для хранения воды, но и для нефти и разного типа нефтепродуктов. Такие конструкции часто имеют цилиндрическую форму. У них обычно делается коническое или сферическое днище. Помимо конструктивных особенностей, от резервуаров высокого давления они отличаются способом проведения замеров давления. Эта процедура может производится вручную, а для этого конструкцией предусмотрен замерный люк, который можно при этом открыть. Несмотря на то, что это делается не автоматическим, а ручным способом, можно получить достаточно точный результат с низкой погрешностью.

Перед введением в эксплуатацию таких резервуаров обязательно проводятся испытания. В ходе таких испытаний следует принять избыточной давление на 25% выше проектного значения, а вакуум – на 50% выше этого показателя. Впрочем, в проектной документации могут быть использованы и другие значения. Хотя низкой давление ассоциируется с закрытым резервуаром, на самом деле в этой категории есть модификации не только со стационарной крышей, и но и с плавающей кровлей и даже с понтоном. Независимо от конкретной разновидности каждый резервуар должен быть снабжен лестницей, которая необходима для осмотра оборудования и регулярного отбора проб. У места присоединения лестницы к крыше резервуара сооружается площадка, с которой также проводится контрольный замер давления.

Читайте также:  Если у кормящей матери поднялось давление

Следует отметить, что по данным исследований резервуары низкого давления являются источниками достаточно высоких технологических потерь нефти. Однако их устройство обходится дешевле, что и обусловило их популярность. Кроме того, в настоящее время ведутся работы по минимизации таких потерь, что делает резервуары этого типа достаточно перспективным оборудованием при условии соблюдении всех строительных норм и правил.

Источник

Абсолютное и избыточное давление

Давление, отсчитываемое от абсолютного нуля, называется абсолютным давлением и обозначается pабс. Абсолютный нуль давления означает полное отсутствие сжимающих напряжений.

В открытых сосудах или водоемах давление на поверхности равно атмосферному pатм. Разность между абсолютным давлением pабс и атмосферным pатм называется избыточным давлением

Когда давление в какой-либо точке, расположенной в объеме жидкости, больше атмосферного, т. е. , то избыточное давление положительно и его называют манометрическим.

Если давление в какой-либо точке оказывается ниже атмосферного, т. е. , то избыточное давление отрицательно. В этом случае его называют разрежениемили вакуумметрическим давлением. За величину разрежения или вакуума принимается недостаток до атмосферного давления:

Максимальный вакуум возможен, если абсолютное давление станет равным давлению насыщенного пара, т. е. pабс = pн.п. Тогда

В случае если давлением насыщенного пара можно пренебречь, имеем

Единицей измерения давления в СИ является паскаль (1 Па = 1 Н/м 2 ), в технической системе – техническая атмосфера (1 ат = 1 кГ/см 2 = 98,1 кПа). При решении технических задач атмосферное давление принимается равным 1 ат = 98,1 кПа.

Манометрическое (избыточное) и вакуумметрическое (разрежение) давление часто измеряются с помощью стеклянных, открытых сверху трубок – пьезометров, присоединяемых к месту измерения давления (рис. 2.5).

Пьезометры измеряют давление в единицах высоты подъема жидкости в трубке. Пусть трубка пьезометра присоединена к резервуару на глубине h1. Высота подъема жидкости в трубке пьезометра определяется давлением жидкости в точке присоединения. Давление в резервуаре на глубине h1 определится из основного закона гидростатики в форме (2.5)

,

где – абсолютное давление в точке присоединения пьезометра;

– абсолютное давление на свободной поверхности жидкости.

Давление в трубке пьезометра (открытой сверху) на глубине h равно

.

Из условия равенства давлений в точке присоединения со стороны резервуара и в пьезометрической трубке получаем

. (2.6)

Если абсолютное давление на свободной поверхности жидкости больше атмосферного (p > pатм) (рис. 2.5.а), то избыточное давление будет манометрическим, и высота подъема жидкости в трубке пьезометра h > h1. В этом случае высоту подъема жидкости в трубке пьезометра называют манометрической или пьезометрической высотой.

Читайте также:  Современные эффективные средства для снижения давления

Манометрическое давление в этом случае определится как

.

Если абсолютное давление на свободной поверхности в резервуаре будет меньше атмосферного (рис. 2.5.б), то в соответствии с формулой (2.6) высота подъема жидкости в трубке пьезометра h будет меньше глубины h1. Величину, на которую опустится уровень жидкости в пьезометре относительно свободной поверхности жидкости в резервуаре, называют вакуумметрической высотой hвак (рис. 2.5.б).

Рассмотрим еще один интересный опыт. К жидкости, находящейся в закрытом резервуаре, на одинаковой глубине присоединены две вертикальные стеклянные трубки: открытая сверху (пьезометр) и запаянная сверху (рис. 2.6). Будем считать, что в запаянной трубке создано полное разряжение, т. е. давление на поверхности жидкости в запаянной трубке равно нулю. (Строго говоря, давление над свободной поверхностью жидкости в запаянной трубке равно давлению насыщенных паров, но ввиду его малости при обычных температурах, этим давлением можно пренебречь).

В соответствии с формулой (2.6) жидкость в запаянной трубке поднимется на высоту, соответствующую абсолютному давлению на глубине h 1:

.

А жидкость в пьезометре, как показано ранее, поднимется на высоту, соответствующую избыточному давлению на глубине h 1.

Вернемся к основному уравнению гидростатики (2.4). Величина H, равная

, (2.7)

где z – расстояние по вертикали от рассматриваемой точки до некоторой плоскости сравнения, называется гидростатическим напором в некоторой точке объема жидкости относительно плоскости сравнения.

Если в выражении (2.7) давление равно избыточному (p = pизб), то величина

(2.8)

называется пьезометрическим напором.

Как следует из формул (2.7), (2.8), напор измеряется в метрах.

Согласно основному уравнению гидростатики (2.4) как гидростатический, так и пьезометрический напоры в покоящейся жидкости относительно произвольно выбранной плоскости сравнения являются постоянными величинами. Для всех точек объема покоящейся жидкости гидростатический напор одинаков. То же самое можно сказать и про пьезометрический напор.

Это значит, что если к резервуару с покоящейся жидкостью подключить на разной высоте пьезометры, то уровни жидкости во всех пьезометрах установятся на одинаковой высоте в одной горизонтальной плоскости, называемой пьезометрической.

Поверхности уровня

Во многих практических задачах бывает важно определить вид и уравнение поверхности уровня.

Поверхностью уровня или поверхностью равного давления называется такая поверхность в жидкости, давление во всех точках которой одно и то же, т. е. на такой поверхности dp = 0.

Так как давление является некоторой функцией координат, т. е. p = f(x,y,z), то уравнение поверхности равного давления будет:

p = f(x, y, z) = C = const. (2.9)

Придавая константе C разные значения, будем получать различные поверхности уровня. Уравнение (2.9) есть уравнение семейства поверхностей уровня.

Свободная поверхность – это поверхность раздела капельной жидкости с газом, в частности, с воздухом. Обычно про свободную поверхность говорят только для несжимаемых (капельных) жидкостей. Понятно, что свободная поверхность является и поверхностью равного давления, величина которого равна давлению в газе (на поверхности раздела).

Читайте также:  Как повысить давление поверхностного насоса

По аналогии с поверхностью уровня вводят понятие поверхности равного потенциала илиэквипотенциальной поверхности – это поверхность, во всех точках которой силовая функция имеет одно и то же значение. Т. е. на такой поверхности

.

Тогда уравнение семейства эквипотенциальных поверхностей будет иметь вид

где постоянная C принимает различные значения для разных поверхностей.

Из интегральной формы уравнений Эйлера (уравнения (2.3)) следует, что

Из этого соотношения можно сделать вывод, что поверхности равного давления и поверхности равного потенциала совпадают, потому что при dp =dU = 0.

Важнейшее свойство поверхностей равного давления и равного потенциала состоит в следующем: объемная сила, действующая на частицу жидкости, находящуюся в любой точке, направлена по нормали к поверхности уровня, проходящей через эту точку.

Докажем это свойство.

Пусть частица жидкости из точки с координатами переместилась по эквипотенциальной поверхности в точку с координатами . Работа объемных сил на этом перемещении будет равна

.

Но, поскольку частица жидкости перемещалась по эквипотенциаль-ной поверхности, dU = 0. Значит работа объемных сил, действующих на частицу, равна нулю. Силы не равны нулю, перемещение не равно нулю, тогда работа может быть равна нулю только при условии, что силы перпендикулярны перемещению. То есть объемные силы нормальны к поверхности уровня.

Обратим внимание на то, что в основном уравнении гидростатики, записанном для случая, когда на жидкость действует только один вид объемных сил – силы тяжести (см. уравнение (2.5))

,

величина p – не обязательно давление на поверхности жидкости. Это может быть давление в любой точке, в которой оно нам известно. Тогда h – это разность глубин (по направлению вертикально вниз) между точкой, в которой давление известно, и точкой, в которой мы хотим его определить. Таким образом, с помощью этого уравнения можно определить значение давления p в любой точке через известное давление в известной точке – p.

Заметим, что величина не зависит от p. Тогда из уравнения (2.5) следует вывод: насколько изменится давление p, настолько же изменится и давление в любой точке объема жидкости p. Поскольку точки, в которых фиксируем p и p, выбраны произвольно, это означает, что давление, создаваемое в любой точке покоящейся жидкости, передается ко всем точкам занимаемого объема жидкости без изменения величины.

Как известно, в этом и состоит закон Паскаля.

По уравнению (2.5) можно определить форму поверхностей уровня покоящейся жидкости. Для этого надо положить p = const. Из уравнения следует, что это выполнимо лишь при h = const. Значит, что при действии на жидкость из объемных сил только сил тяжести, поверхности уровня представляют собой горизонтальные плоскости.

Такой же горизонтальной плоскостью будет и свободная поверхность покоящейся жидкости.

Источник

Adblock
detector