Меню

Внутренняя энергия увеличилась адиабатный как при этом изменилось давление газа

Упражнение 15

Решение упражнений к учебнику Г.Я.Мякишева, Б.Б.Буховцева

1. Как изменится внутренняя энергия одноатомного идеального газа, если его давление увеличится в 3 раза, а объем уменьшится в 2 раза?

2. Термодинамической системе передано количество теплоты 200 Дж. Как изменилась внутренняя энергия системы, если при этом она совершила работу 400 Дж?

3. Стержень отбойного молотка приводится в движение сжатым воздухом. Масса воздуха в цилиндре за время хода поршня меняется от 0,1 до 0,5 г. Считая давление воздуха в цилиндре и температуру (27⁰C) постоянными, определите работу газа за один ход поршня. Молярная масса воздуха М = 0,029 кг/моль.

4. На одинаковые газовые горелки поставили два одинаковых плотно закупоренных сосуда вместимостью по 1 л. В одном сосуде находится вода, а в другом — воздух. Какой сосуд быстрее нагревается до 50 °С? Почему?

5. Предложен следующий проект вечного двигателя (рис. 13.12). Закрытый сосуд разделен на две половинки герметичной перегородкой, сквозь которую пропущены трубка и водяная турбина в кожухе с двумя отверстиями. Давление воздуха в нижней части больше, чем в верхней. Вода поднимается по трубке и наполняет открытую камеру. В нижней части очередная порция воды выливается из камеры турбины, подошедшей к отверстию кожуха. Почему данная машина не будет работать вечно?

6. Положительна или отрицательна работа газа в процессах 1—2, 2—3 и 3—1 на рисунке 10.5? Получает газ тепло или отдает в каждом из этих процессов?

7. Какое количество теплоты необходимо для изохорного нагревания гелия массой 4 кг на 100 К?

8. Вычислите увеличение внутренней энергии водорода массой 2 кг при изобарном его нагревании на 10 К. (Удельная теплоемкость водорода при постоянном давлении равна 14 кДж/(кг• К).)

9. В цилиндре компрессора сжимают идеальный одноатомный газ, количество вещества которого 4 моль. Определите, насколько поднялась температура газа за один ход поршня, если при этом была совершена работа 500 Дж. Процесс считайте адиабатным.

10. В калориметре находится вода массой 0,4 кг при температуре 10 °С. В воду положили лед массой 0,6 кг при температуре -40 ⁰С. Какая температура установится в калориметре, если его теплоемкость ничтожно мала?

11. Какой должна быть температура нагревателя, для того чтобы стало возможным достижение значения КПД тепловой машины 80%, если температура холодильника 27 °С?

12. В процессе работы тепловой машины за некоторое время рабочим телом было получено от нагревателя количество теплоты (Q1 = 1,5 •10 6 Дж, передано холодильнику Q2 = -1,2 • 10 6 Дж. Вычислите КПД машины и сравните его с максимально возможным КПД, если температуры нагревателя и холодильника соответственно равны 250 °С и 30 °С.

Источник

Новое в блогах

Физический смысл адиабатного процесса (Часть 1 — Давление газа)

1. Это первая часть статьи, которую я планирую написать и опубликовать. Вторая часть будет посвящена температуре, третья — экспериментальной проверке теоретических выводов.

2. Приношу свои извинения за не совсем адекватное написание формул. Всем, кого заинтересовала эта статья, могу выслать на мыло вариант в формате docx с нормально написанными формулами (мой адрес — [email protected]x.ru)

3. Приглашаю к сотрудничеству по разработке основных положений электромагнитной теории теплоты всех желающих

4. Продолжение следует.

Хорошо известно, что при сжатии газа повышается его давление и его температура. Соответственно, при расширении газа температура и давление падают. Если при этом система (сжимаемый газ и ёмкость, в котором этот газ содержатся) не обменивается тепловой энергией друг с другом и с окружающим пространством, то такие процессы сжатия и расширения называются адиабатными (адиабатическими).

Читайте также:  Регулятор давления топлива common rail bosch

Современная теоретическая физика (статистическая физика, статистическая механика, физическая кинетика) до сих пор объясняет изменение давления и температуры газов работой, которая совершается над газами при их сжатии или которую совершает сам газ при расширении. См, например: ( http://ru.wikipedia.org/wiki/%C0%E4%E8%E0%E1%E0%F2%E8%F7%E5%F1%EA%E8%E9_%EF%F0%EE%F6%E5%F1%F1 )

Характер изменения величин давления и температуры газов при адиабатном процессе в современной теоретической физике считается потенциальной функцией, основанием которой является занимаемый газом определенной массой объём V , а показатель зависит от т.н. показателя адиабаты k :

k = C (p) /C (V) , где

Cp и CV — теплоёмкости газа при постоянном давлении и постоянном объёме, соответственно.

Для идеальных газов, с которыми так любит иметь дело современная теоретическая физика, теплоёмкости которых считаются постоянными, характер изменения давления и температуры определяется простейшими уравнениями:

p= const /V^ k =co nst V^ (- k ) ,

T= const/ V^ (k-1) =const V^ (1-k) , где

p – давление газа,

V – объем, занимаемый газом,

T – температура газа (абсолютная),

k – показатель адиабаты.

Тому же самому учат и все современные школьные учебники и курсы лекций по общей физике.

Современная теоретическая физика считает, что величина показателя адиабаты k равна 5/3 для одноатомных газов, 7/5 – для двухатомных и 4/3 – для трёхатомных газов. Изменение величины показателя адиабаты принято обосновывать количеством неких «степеней свободы» у газообразных молекул. Хотя абсолютно никакой логики и никакого физического смысла в попытке связать эти самые «степени свободы» с величиной показателя адиабаты нет.

Что же происходит при адиабатных процессах с газами согласно разрабатываемой мной электромагнитной теории теплоты (ЭТТ).

Согласно ЭТТ агрегатное состояние вещества определяется текущим распределением электронов атомов, входящих в состав молекулы. Существует три основным электронных уровня – газообразующий, в котором может находиться не более двух электронов, гидрогенный («жидкостной») и кристаллообразующий, в группах которых может содержаться максимум по 8 электронов. Таковы на сегодняшний день представления ЭТТ о строении атомов и молекул, сделанные на основе свойств элементов периодической таблицы Менделеева.

Молекула реального газа гелия (He), более всех других подходящего на роль «идеального» газа, представлена на рис. 1. Она имеет одноатомное молекулярное ядро, в состав которого входит два протона и два нейтрона, и два электрона, которые при нормальных условиях располагаются на газообразующем уровне – вращаясь по замысловатым траекториям вокруг молекулярного ядра, они создают вокруг него сферическое электронное «облако».

Рис. 1. Газообразная молекула He (гелия)

согласно электромагнитной теории теплоты.

Электроны, вращаясь вокруг молекулярного ядра, создают т.н. «электронное облако», которое индуцирует электрическое и магнитное поля. Эти поля, взаимодействуя с электрическими и магнитными полями, индуцируемыми электронами соседних молекул, и заставляют газообразные молекулы отталкиваться друг от друга, как одноимённые электрические заряды и одинаковые полюса магнитов. Эти силы отталкивания молекул друг от друга и приводят ко всем хорошо известным свойствам газов занимать весь предоставленный объём, рассеиваться в вакууме (космическом пространстве), обладать упругостью, создавать, вследствие действия силы притяжения к Земле, атмосферное давление, передавать давление в разных направлениях, например, звуковые волны и т.д. и т.п.

Читайте также:  Как таблетки мексидол влияют на давление

Предположим, мы имеем некий цилиндр с поршнем, наполненный молекулами «идеального» газа гелия (см. рис. 2 слева). Приложив к штоку поршня некоторую силу F , т.е. попросту надавив на поршень, мы уменьшили объём газа в n раз – например, как это показано на рис. 2 справа – вдвое.

Рис. 2. Адиабатное сжатие газа

согласно электромагнитной теории теплоты.

Вследствие сжатия газообразные молекулы гелия уплотнились, расстояния между молекулярными ядрами уменьшились. Соответственно, главные эквипотенциальные поверхности полей молекул сократились в размерах, – что наглядно изображено на рис. 2.

Кстати, рис. 2 наглядно отображает характер уплотнения молекул. Хотя сперва кажется, будто бы я просто-напросто не нарисовал половину молекул внутри цилиндра с поршнем. Присмотритесь внимательно – в каждом ряду молекул на рисунке справа – 9 штук, а слева – уже 11. Я не ошибся. При уменьшении объёма вдвое расстояние между молекулами уменьшается всего на одну пятую часть – см. рис. 3.

Рис. 3. Изменение соотношений длины ребра и площади грани куба

при уменьшении его объёма вдвое.

То есть, при уменьшении объёма в n раз расстояние между центрами газовых молекул сокращается в куб.корень из < n> раз.

Определим, в какой пропорции увеличиваются силы отталкивания между отдельными молекулами (см. рис. 4).

Рис. 4. Увеличение сил отталкивания между отдельными газовыми молекулами при сжатии газа.

Согласно закона Кулона, величина силы взаимодействия двух точечных зарядов прямо пропорциональна произведению модулей этих зарядов q 1 и q 2 и обратно пропорциональна квадрату расстояния R между ними:

k в данном случае – коэффициент пропорциональности.

Эта формула универсальна для всех известных полей – и для магнитного и для гравитационного. Для гравитационного поля, например, этой формулой описывается закон всемирного тяготения:

где γ — гравитационная постоянная, по сути – тот же самый коэффициент пропорциональности, а m 1 и m 2 – масса тел («гравитационный заряд»).

В нашем случае мы под обозначением q 1 и q 2 будем понимать условную сумму всех типов «зарядов», индуцирующих соответствующие поля – и электрического, и магнитного, и пытающегося им противостоять гравитационного (как известно, гравитационное поле создаёт лишь силы притяжения). Таким образом (см. рис. 4), до сжатия газа, отдельно взятые молекулы отталкивались друг от друга с силой:

а после сжатия – с силой:

Таким образом, при уменьшении объёма в n раз (специалисты в области двигателей внутреннего сгорания называют эту величину степенью сжатия) сила отталкивания между отдельными молекулами увеличится в:

Во сколько же раз в этом случае возрастёт давление газа? Чтобы правильно ответить на этот вопрос, вспомним, что же такое давление. Это величина усилия на единицу площади.

После сжатия, как мы определили, усилие каждой отдельной газовой молекулы на внутреннюю поверхность цилиндра увеличилось в <куб. кор из n>^ 2 раз. Но, помимо этого, увеличилось и количество молекул, оказывающих давление на ту же самую площадь внутренней поверхности цилиндра (см. рис. 5).

Рис. 5. При сжатии газа увеличивается количество молекул,

оказывающих давление на единицу площади.

Допустим, что если до сжатия на «единичную» площадь оказывало давление a молекул, то, как абсолютно очевидно, после сжатия газа в n раз число этих молекул стало <куб. кор. из n> a × <куб. кор. из n> a = <куб. кор. из n>^ 2 a^ 2 . То есть количество газовых молекул, оказывающих давление на «единичную» площадь, увеличилось в <куб. кор. из n>^ 2 раз.

Если количество молекул, оказывающих давление на единицу площади поверхности, увеличилось в <куб. кор из n>^ 2 раз, и сила давления каждой молекулы на поверхность тоже увеличилось в <куб. кор. из n>^ 2 раз, то давление газа при его сжатии в n раз увеличивается в <куб. кор. из n>^ 2 × <куб.кор. из n>^ 2 = <куб.кор. из n>^ 4 = n ^<4/ 3> раз.

Таким образом, используя простейшие математические операции и логику, мы получаем показатель адиабаты для одноатомных идеальных газов, равный 4/3.

Как видим, он не соответствует общепринятому на сегодня показателю адиабаты для идеальных одноатомных газов, равному 5/3. Значит, выводы поспешны и не соответствуют истине? Вовсе нет. Ответ на вопрос, какая теория – молекулярно-кинетическая или электромагнитная более адекватно и более точно описывает реальное состояние газовых сред, могут дать только натурные эксперименты. Дело в том, что результаты прямого измерения показателя адиабаты для инертных газов вовсе не соответствуют теоретическим выкладкам, полученным из количества степеней свободы.

Источник

Как меняется внутренняя энергия идеального газа при адиабатическом расширении?

Изменение внутренней энергии отрицательно

Изменение внутренней энергии равно нулю

Внутренняя энергия идеального газа всегда равна нулю

Изменение внутренней энергии положительно

Изменение внутренней энергии может иметь любое значение

Идеальным мы называем газ, соответствующий следующему условию:

Размерами молекул газа, которые не взаимодействуют между собой на расстоянии, можно пренебречь по сравнению с расстоянием между ними.

Молекулы газа не взаимодействуют между собой на расстоянии.

Молекулы газа взаимодействуют между собой на расстоянии.

Размерами молекул газа можно пренебречь по сравнению с расстоянием между ними.

Можно пренебречь движением молекул.

Реальный газ – это газ, в котором

Молекулы взаимодействуют на расстоянии

Молекулы – материальные точки

Внутренняя энергия газа определяется только энергией теплового движения молекул

Параметры газа связаны уравнением Клапейрона

Молекулы не взаимодействуют друг с другом

Что называют насыщенным паром?

Пар, находящийся в динамическом равновесии со своей жидкостью

Пар при температуре Т = 0

Пар с температурой ниже критической температуры

Пар с температурой выше температуры кипения

Пар при температуре кипения

Как изменится давление газа, если концентрация его молекул увеличится в 3 раза, а средняя квадратичная скорость молекул уменьшится в 3 раза?

Уменьшится в 3 раза

Увеличится в 9 раз

Уменьшится в 4 раза

Увеличится в 3 раза

Какая из величин измеряется не в Джоулях:

Потенциальная энергия упругой силы

Потенциальная энергия силы тяжести

При постоянном давлении объем газа увеличился. Какая физическая величина равна произведению давления на изменение объема в этом случае:

Работа, совершенная газом

Работа, совершенная над газом внешними силами

Внутренняя энергия газа

Количество теплоты, отданное газом

Количество теплоты, получаемое газом

В сосуде объемом 4 м 3 находится молекулярный водород массой 1 г. Определить концентрацию его молекул.

Найти удельную теплоемкость молекулярного водорода при постоянном объеме

Найти удельную теплоемкость гелия при постоянном давлении

Найти молярную массу смеси кислорода массой 64 г и азота массой 84 г.

Определить количество теплоты, сообщенное молекулярному водороду массой 0,5 кг, нагретому на 100 К при постоянном давлении

Источник

Adblock
detector